

Supercomputação encontra plasmas extremos

Marija Vranic

GoLP/IPFN Instituto Superior Técnico Universidade de Lisboa

Acknowledgements

Work in collaboration with:

ELI: M. Jirka, O. Klimo, G. Korn, S. Weber

Simulation results obtained at Jugene/Juqueen, SuperMUC, Jaguar, Fermi/Marconi, Salomon, MareNostrum.

MINISTÉRIO DA CIÊNCIA. TECNOLOGIA E ENSINO SUPERIOR

IST: T. Grismayer, B. Martinez, O. Amaro, B. Barbosa, R. Babjak, R. A. Fonseca, L. O. Silva

Supported by the Seventh Framework Programme of the European Union

Tecnologia para o Conhecimento

Fundação para a Ciência e a Tecnologia

Fundo Europeu

What is a plasma?

- Plasma is a quasi-neutral ionised gas formed by an approximately equal number of electrons and ions
- Over 99% of the visible Universe is in the plasma state
- Most (or all) molecular bonds are broken
- In a way, plasma is an "already destroyed" material
- This allows strong fields to exist in plasmas the fields that would destroy any other material

4th state of matter

Fundação para a Ciência

What happens in a plasma in the presence of extreme fields?

- relativistic particles
- radiation reaction
- hard photon emission
- (anomalous) radiative trapping
- e+e- pair production
- QED cascades
- EM field depletion by self-created plasma

FCCN November 13, 2022

In nature, where can such plasmas be found?

When intense lasers interact with matter

In magnetospheres of neutron stars

Credit: Dana Berry / NASA

Fundação para a Ciência

Around black holes

PORTUGAL 2020

Credit: Event Horizon Telescope collaboration, M87 / NASA Fundo Europeu

Particle-in-cell algorithm captures how EM fields affect moving charges, as well as how currents affect the EM background

OSIRIS framework

Massively Parallel, Fully Relativistic Particle-in-Cell Code

- Parallel scalability to 2 M cores
- Explicit SSE / AVX / QPX / Xeon
- Phi / CUDA support
- Extended physics/simulation
- models

Committed to open science

Open-access model

40+ research groups worldwide are using OSIRIS 300+ publications in leading scientific journals Large developer and user community Detailed documentation and sample inputs files available

Using OSIRIS 4.0

The code can be used freely by research institutions after signing an MoU Find out more at:

http://epp.tecnico.ulisboa.pt/osiris

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt

The ZPIC educational code suite

ZPIC code suite

- Open-source PIC code suit for plasma physics education
- Fully relativistic 1D and 2D EM-PIC algorithm
- Electrostatic 1D/2D PIC algorithm

• Requirements

- No external dependencies for base code, requires only C99 compiler
- Python interface included

Jupiter Notebooks

zpic@edu

- Includes set of Python notebooks with example problems
- Detailed explanations of code use and physics

Also available through Docker

 If you just want to run the notebooks you can use a Docker image available on DockerHub: **zamb/zpic**

Come find us on GitHub Jupyter github.com/ricardo-fonseca/zpic

CNICO

Classical radiation reaction can be added like a "damping force" in the particle pusher*

Ricardo Fonseca ricardo.fonseca@tecnico.ulisboa.pt Frank Tsung tsung@physics.ucla.edu

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

M.Vranic et al., CPC 204, 141-157 (2016)

Interpolation: evaluating force on particles

 $(\mathbf{E},\mathbf{B})_i \to \mathbf{F}_p$

FUJITSU

What new features are needed in plasma modelling?

Adding classical radiation reaction

- Modelling electron beam slowdown in scattering configurations
- Modelling other configurations where only a fraction of electrons may be subject to RR but where this can alter qualitative behaviour

M.Vranic et al., PRL (2014); M.Vranic et al., CPC (2016); M.Vranic et al, PPCF (2018)

Adding quantum processes

- Modelling the onset of QED, RR from quantum perspective
- Modelling e+e- pair production
- QED cascades, nonlinear regimes where many particles are created and collective plasma dynamics can alter the background fields

M.Vranic et al, NJP (2016); T. Grismayer et al, POP (2016); T. Grismayer et al, PRE (2017); J. L. Martins et al, PPCF (2016); M.Vranic et al, PPCF (2017); M.Vranic et al, SciRep (2018);

Performance improvements

- Particle merging, advanced load balancing schemes
- Essential for all the projects with strong QED effects
- M.Vranic et al., CPC (2015)

Fundação para a Ciência

Quantum processes need to be included via Monte Carlo

TÉCNICO LISBOA UCLA

Ricardo Fonseca ricardo.fonseca@tecnico.ulisboa.pt Frank Tsung tsung@physics.ucla.edu

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

FUJITSU RNCA Standing wave (2-laser) configurations for QED cascades

A.R Bell and J. G Kirk PRL, 101, 200403 (2008); M.A Fedotov et al. PRL 105, 080402 (2010); E. Nerush et al., 106 035201, PRL (2011); T. Grismayer et al., POP 23, 056706 (2016)

Fundação , para a Ciência _ a Tecnologia

FUJITSU **RNCA** We can create a 2D standing wave using multiple lasers

M. Vranic et al., PPCF 59, 014040 (2017)

Enough plasma is produce

M.Vranic et al., PPCF 59, 014040 (2017)

D Stancaptured in the loops, particles efficiently accelerate and radiate

IJ

Laser energy is efficiently converted to new particles and hard photons

M.Vranic et al., PPCF 59, 014040 (2017)

' Fundação para a Ciência e a Tecnologia

These simulations require HPC systems

- Over 1 million core-hours per simulation
- Without designated performance enhancements, the simulations would not be possible even on large HPC systems
- ▶ PI & co-PI on competitive supercomputing projects with ~ 300 million core-hours combined

MareNostrum, BSC

Ada King, Countess of Lovelace

Fundação para a Ciência

