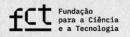


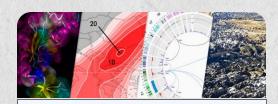
Encontro **RNCA 2023**

07 e 08 de novembro de 2023 UTAD, Vila Real



Access to MareNostrum5 and other European HPC infrastructures

Oriol Pineda, PhD Barcelona Supercomputing Center

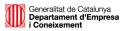


Barcelona Supercomputing Center – Centro Nacional de Supercomputación

R&D in Computer, Life, Earth and Engineering Sciences

PhD programme, technology transfer, public engagement

Supercomputing and data services to Spanish and EU researchers


BSC-CNS is a consortium that includes **Spanish Government**

60%

Catalan Government

30%

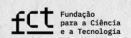
Univ. Politècnica de Catalunya (UPC)

10%

UNIVERSITAT POLITÈCNI DE CATALUNYA BARCELONATECH

Barcelona Supercomputing Center – Centro Nacional de Supercomputación

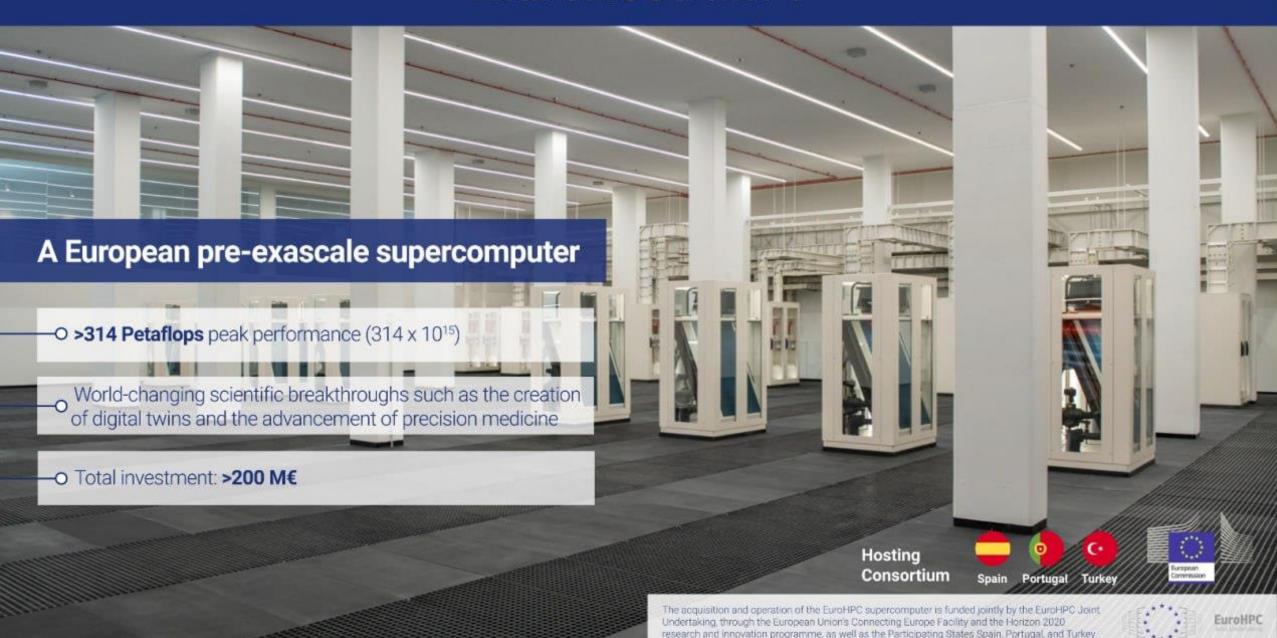
To influence the way machines are built, programmed and used: programming models, performance tools, Big Data, computer architecture, energy efficiency


To develop and implement global and regional state-of-the-art models for short-term air quality forecast and long-term climate applications

To understand living organisms by means of theoretical and computational methods (molecular modeling, genomics, proteomics)

To develop scientific and engineering software to efficiently exploit super-computing capabilities (biomedical, geophysics, atmospheric, energy, social and economic simulations)





MareNostrum 5

GPP - General Purpose Intel Sapphire Rapids

Peak performance: 45.4 Pflops Sustained HPL:

NGT GPP - Next Generation

NVIDIA Grace

Peak performance: 2.82 Pflops Sustained HPL:

MareNostrum 5

InfiniBand

NDR 200

Fat Tree

Spectrum Scale

248 PB HDD

File System

2.81 PB NVMe

402 PB tape

ACC - Accelerated

Intel Sapphire Rapids
NVIDIA Hopper

Peak performance: 260 Pflops Sustained HPL:

NextGen, Accelerated

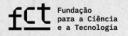
Technology under evaluation Peak performance >6 PFlop/s

The acquisition and operation of the EuroHPC supercomputer is funded jointly by the EuroHPC Joint Undertaking, through the European Union's Connecting Europe Facility and the Horizon 2020 research and innovation programme, as well as the Participating States Spain, Portugal, Croatia, and Turkey

MareNostrum5 - General Purpose Partition

90 racks, 72 nodes per rack, 6480 nodes, peak performance 45 PFlop/s Node configuration:

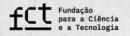
- 2x Intel Sapphire Rapids 8480+ processors, 56 cores at 2GHz
 - 6192 nodes with 256GB DDR5
 - 216 FAT nodes with 1TB DDR5
- 2x Intel Sapphire Rapids 03H-LC processors, 56 cores at 1.7GHz
 - 72 nodes with 128GB HBM + 32GB DDR5
- All
 - 960GB NVMe local storage
 - NDR200 shared by two nodes
 - DLC and RDHX cooling



MareNostrum5 - Accelerated Partition

35 racks, 32 nodes per rack, 1120 nodes, peak performance 260 PFlop/s Node configuration:

- 2x Intel Sapphire Rapids 8460Y+ processors, 32 cores at 2.3GHz
 - 512GB DDR5
 - 480GB NVMe local storage
- 4x NVIDIA Hopper 64GB HBM
- 4x NDR200
- DLC cooling



MareNostrum5 – NextGen General Purpose

7 racks, 68 nodes per rack, 408 nodes, peak performance 2.8 PFlop/s Node configuration:

- 2x NVIDIA Grace processors, 72 cores at 2.6GHz
 - 240GB LPDDR5
 - 128GB NVMe local storage
- NDR200
- RDHX cooling

MareNostrum5 - Storage

Hard-drive storage

Spectrum Scale File System. 25 racks with RDHX cooling. In total:

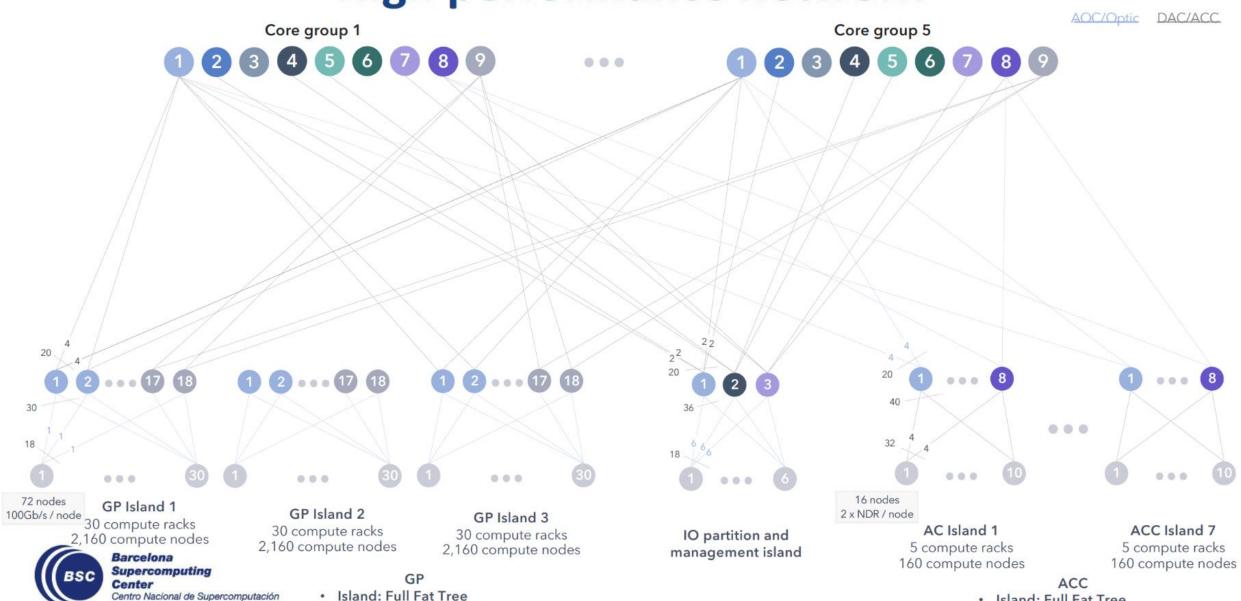
- 20.400 HDDs, 18TB each, 1.6TB/s read,
 1.2 TB/s write. Total Net Capacity
 248PB
- 20 NVMe Flash, 15TB each, 600GB/s read&write. Total Net Capacity 2.8 PB

4xNDR200 per module

Tape-based storage

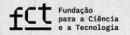
Two tape libraries, 13 racks each library:

- Total 20,100 tapes, 20TB per tape, 402PB Net capacity
- 64 drives, 400MB/s per drive



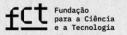
High performance network


· Partition: contention 3:2


· Island: Full Fat Tree

Partition: contention 2:1

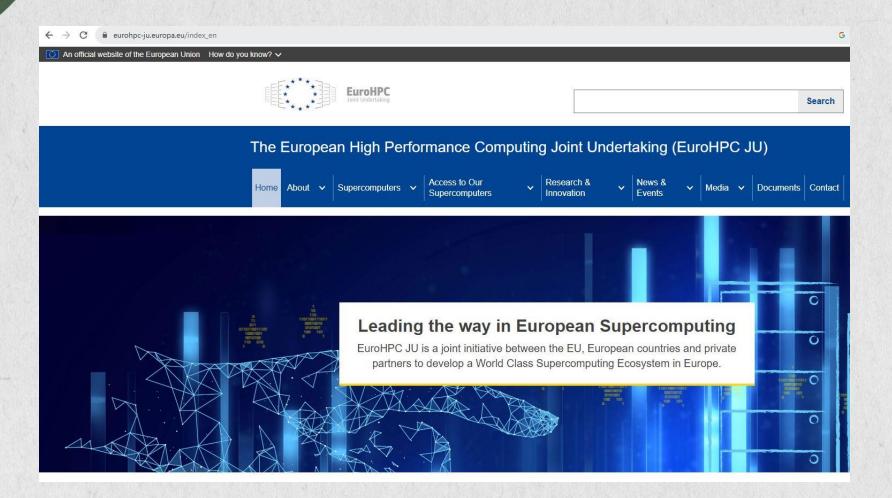
Access to MareNostrum5

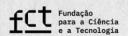

Access to MareNostrum5

EuroHPC JU access programmes
Extreme Scale Access, 2 calls per year
Regular Access, 3 calls per year
Benchmark and Development Access, rolling call

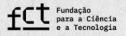
Red Española de Supercomputación 3 calls per year, for HPC and IA access

RNCA
Call for Advanced Computing Projects





EuroHPC JU - Access

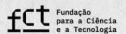


EuroHPC JU – Access Programmes

- Benchmark Access: to test applications on EuroHPC systems prior to applying for an Extreme Scale or Regular Access project
- Development Access: to develop, test and optimise applications on EuroHPC systems
- Regular Access: to serve research domains, industry open R&D and public sector applications that require access to substantial computing and storage resources
- Extreme-scale Access: targets HPC applications with high-impact and high-gain innovative research from academia, industry and public sector

EuroHPC JU - Regular Access

SYSTEM*	SITE (&COUNTRY)	ARCHITECTURE	PARTITION	TOTAL RESOURCES**	MINIMUM REQUEST
MN5 MARENOSTRUM	BSC (ES)	Lenovo ThinkSystems SD650	MN5 GPP	376 719	38 000
		Atos BullSequana XH3000	MN5 ACC	300 563	20 000
LEONARDO	CINECA (IT)	Atos BullSequana XH2000	Leonardo DCGP	132 347	13 000
			Leonardo Booster	300 563	20 000
LUMI	CSC (FI)	HPE Cray EX	LUMI-C	376 719	37 000
			LUMI-G	738 665	50 000
DISCOVERER Bells Petascale Eugercamputer	Sofia Tech Park (BG)	Atos BullSequana XH2000	Discoverer CPU	812 500	80 000
MELUXINA MENTANAMA MENTANAMA CONVEYENCE IN LUCKNOCKE	LuxProvide (LU)	Atos BullSequana XH2000	MeluXina CPU	511 719	80 000
			MeluXina GPU	173 438	30 000
K A R Ø L 1 N A	IT4I VSB-TUO (CZ)	HPE Apollo 2000 Gen10 Plus x86_64Atos	Karolina CPU	468 750	80 000
		HPE Apollo 6500	Karolina GPU	46 975	8 000


EuroHPC JU - Extreme-scale Access

Two calls per year Five months from deadline to allocation

SYSTEM*	SITE (COUNTRY)	ARCHITECTURE	PARTITION	TOTAL RESOURCES**	MINIMUM REQUEST
MN5 MARENOSTRUM	BSC (ES)	Lenovo ThinkSystems SD650	MN5 GPP	3 955 550	400 000
		Atos BullSequana XH3000	MN5 ACC	4 207 883	420 000
LEONARDO	Cineca (IT)	Atos BullSequana XH2000	Leonardo DCGP	1 852 863	185 000
			Leonardo Booster	4 207 883	420 000
LUMI	CSC (FI)	HPE Cray EX	LUMI-C	3 955 550	390 000
			LUMI-G	7 755 983	775 000

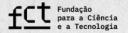
EuroHPC JU - Awarded projects

Awarded Pro	njects	
Filter by	Awarded Projects (6)	⋒ RS
Keywords	Showing results 1 to 6	
Access Mode		nisms in Extreme Plasma Physics
Select Call Cut-off	Universe Sciences, Fundamental Constituents objects produce coherent radiation.	nat disorganised plasmas around compact How orderly processes can arise from such nt dynamics still eludes us. Several mechanism
Select	have been proposed to explain these	
Country		
Portugal		c fluids flow Past Confined Cylinder
Domain	Engineering, Mathematics	y have elastic and plastic behaviors are b, chocolate), nature (fluids and materials in the

Red Española de Supercomputación

Red Española de Supercomputación (RES), created in 2007

- Member of the Spanish Unique Scientific and Technical Infrastructures network (ICTS)
- Composed of 14 members, offering access to:
 - 16 High-Performance Computing systems
 - 9 Data Management facilities

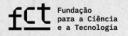


Red Española de Supercomputación

RES in numbers

- Combined computing capacity above 22 PFlop/s
- Combined storage capacity above 180 PBytes
- High-speed network (RedIRIS)
- High-speed network (Realkis)
 Periodic competitive calls for access

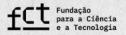
 >20% through RES


Annual statistics (2023)

- Nearly 1.000 million core hours distributed
- ~400 activities/experiments enabled
- ~240 scientific papers acknowledging RES
- More than 1.000 regular users

RES Competitive Services

Computing SERVICES


Data Management SERVICES

Artificial Intelligence SERVICES

- Quarterly calls and allocations
- Submissions by Jan, May, Sept
- Up to 30M core hours per year

- Yearly call
- Open from November to January
- Duration 3 to 5 years
- From 200TB to 1PB
 + VMs

- Quarterly calls and allocations
- Submissions by Jan, May, Sept
- Mentored activities
- Test activities

RES Past awards

Home > List of application activities	
List of application activ	vities
All Areas	✓ 2023-3 (November 1st - February 29th) ✓ Q Search
Search Results	
Area: Astronomy, Space and Ear	th Sciences
Title: Modelling the impacts of g	reen infrastructure on air quality and climate change at the urban scale.
Leader: Gara Villalba Méndez	
Institution: Associate professor	at the Dept. of Chemical, Biological, and Environmental Engineering, Universitat Autònoma de Barcelona and senior researcher at
the Institute of Environmental Sc	ience and Technology
Assigned machine(s): Picasso (JMA)
Assigned khours with priority: 7	00
Abstract:	
The computational activity propo	sed takes place in the context of the ERC Consolidator project URBAG: Integrated System Analysis of Urban Vegetation and
Agriculture 2019-2025). Given th	e need of cities to increment green areas and local agriculture to promote urban sustainability, URBAG aims to provide the
knowledge and tools to evaluate	which combinations of urban/peri-urban agriculture and green spaces result in the best performance in terms of air quality, heat
wave and climate change mitiga	tion, as well as ecosystem services provided to urban dwellers. To do so, URBAG uses, develops, and improves atmospheric
-	ale with the aim to evaluate 1) the efficacy of green areas on heat wave episodes using WRF and 2) how urban and peri-urban
	air quality and climate change using WRF

https://www.bsc.es/res-intranet/abstracts

Access to MareNostrum 5

Up to 1Mh

1Mh to 10Mh

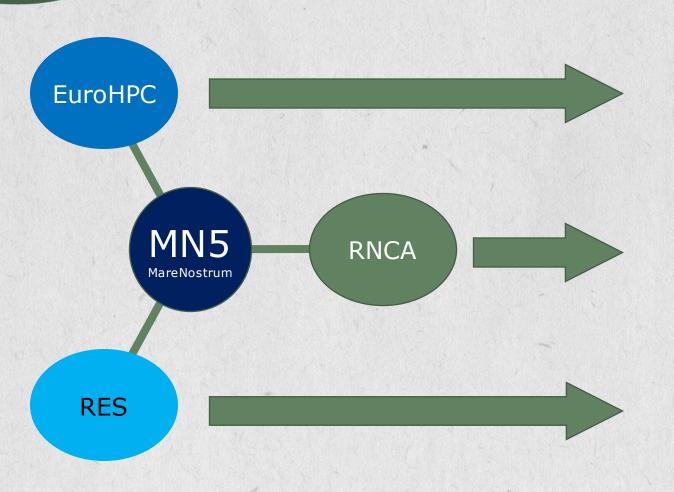
10Mh to 100Mh

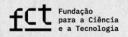
More than 100Mh

RES

RNCA

EuroHPC




Access to European HPC systems

EuroHPC Exascale (2), pre-exascale (3), mid-range (3) and petascale systems (5)

Portuguese HPC systems, including **Deucalion**

Spanish HPC systems (17) and Data Management centres (9)

