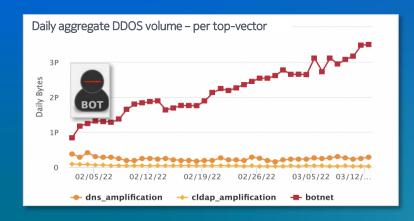
NOCIA

A rede como solução anti-DDoS

DDoS attacks on public services are impacting and mediatic

It said the distributed denial of service, or DDoS, attacks aimed at overwhelming the platform occurred for a second consecutive day Tuesday. The attack involved computers from 114 countries, causing outages and delays in high school exams but failing to incapacitate the system, the ministry said.

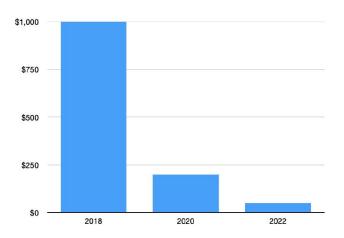

political spat I AP News

Worst cyberattack in Greece disrupts high school exams, causes

Botnets became a dominant threat

Botnet DDoS

became dominant form of attack in first quarter 2022



Rise of Botnets

Increasingly competitive booter market and cheap IoT botnets

Average Price for Buying DDoS Attacks

Collapse in daily average US price for launching a 100 Gbps DDoS using illegal booter web sites 2018 - 2022



Allowing the proliferation of DDoS attacks

Botnet attack against EU customer

The technical challenge with botnet DDOS

Traditional payload pattern detection techniques are no longer useful

Traditional DDoS (1990 – 2021)

- Spoofed IP addresses to trigger reflected amplified responses
- Or floods of crafted packets
- Often from well-known domains

From threshold-based detection...

Botnet-based DDoS

- Real devices, real IP-addresses and full TCP stack
- Appears as "regular" HTTP(s) bypass typical scrubbing payload ML
- Growing armies of devices connected anywhere

...to big-data **knowledge-based** detection

A new DDoS protection paradigm is needed

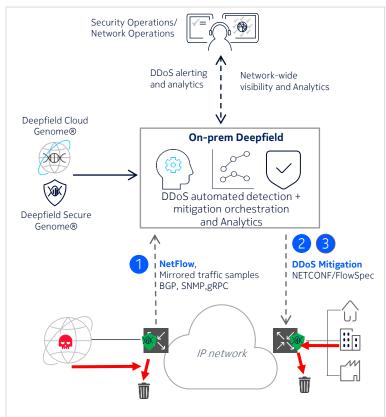
1 Surgical Detection based on big-data principles

From threshold-based...

...to knowledge-based detection

2 Leverage advances in IP Silicon to filter DDoS attacks

From expensive/limited scale DPI scrubbing...


...to scalable line-rate scrubbing on IP silicon

...with anti-DDoS at the Peering routers

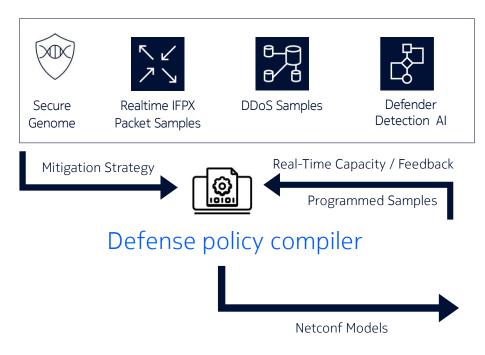
Requires from the IP silicon:

- Telemetry performance
 - sampling rate OR mirroring
- Packet filtering scale
- 3 Packet filtering performance
 - ➤ line rate (!)

... the network is able to natively* classify DDoS traffic

Time 🌵 TTL	Proto TCF Flag	Peer	Src IP SPort	Dst IP DPort	Drop	Src Genome	Bytes 🔻	Len 🍦
13:45:00 60	17	3000	131.99.238 22897	.152.18 7778	44	lighttpd webcam	536094310	1,428
13:45:00 58	17		56.86.130 61792	.152.18 7778	44	commax webcam ulwsd ddosbot	536094310	1,428
13:30:00 60	17		66.250.12828157	.152.18 7778	16	ddosbot	534757427	1,427
13:45:00 61	17		84.1.105 5306	.152.18 7778	16	unknown_web fujitsu.com ddosamp rfjs ddosbot	534757427	1,427
13:45:00 61	17		59.11.196 48338	.152.18 7778	16	ntt.com ddosbot	534757427	1,427
13:45:00 60	17		11.137.76 41311	.152.18 7778	44	commax webcam ulwsd speco con.net com ddosbot	534024294	1,428
13:50:00 55	17		.157.33 27181	.152.18 7778	16	apo-webs httpd webcam ve.com unknown_dns hikvision myfritz ddosbot	533827788	1,427
13:55:00 62	17		2.99.28 2823	.152.18 7778	44	ddosbot	533722419	1,428

Advanced detection logic Combining:

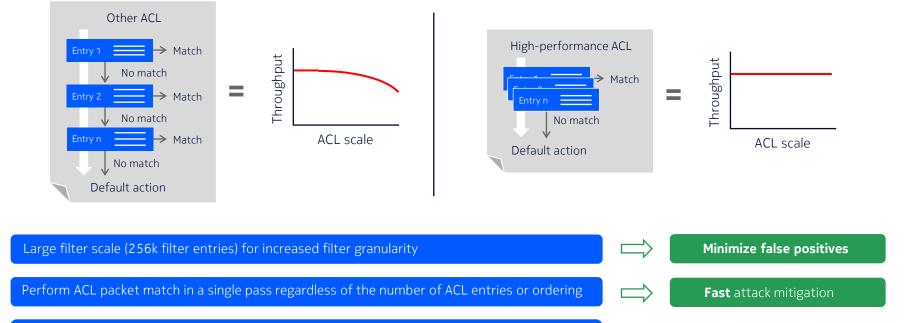

- o Genome info on src&dst IPs
- o traffic rates and traffic patterns
- o traffic 'invariants'
- o Source-IP cardinality
- o Info on Internet topology (TTL, peering/transit networks)

(*): Native detection = no need to configure traffic thresholds for each type of potentially malicious traffic

... and then compile the most efficient filter list...

Genome, AI/ML, Compiler and high-performance IP silicon as protection enablers

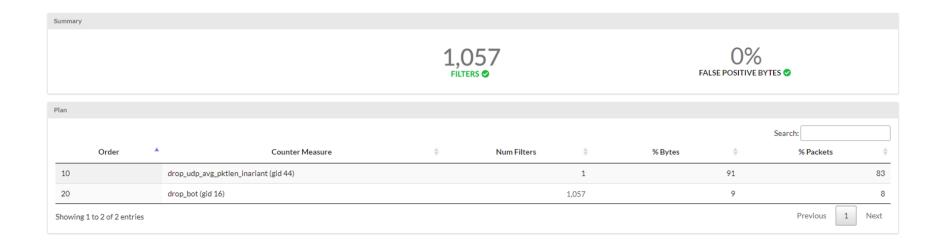
All data processing / filtering on-premise


```
description ";#DFA;acl_90"
   match protocol 17
       dst-ip ip-prefix-list "VLAB_7_1"
       packet-length lt 40
entry 9 create
   description ";#DFA;acl_571"
   match protocol 6
       dst-ip ip-prefix-list "VLAB_7_1"
       tcp-fin true
       tcp-syn true
       drop
entry 10 create
   description ";#DFA;acl_579"
   match protocol 6
       src-ip ip-prefix-list "VLAB 9 518"
entry 4 create
   description ";#DFA;acl_13498"
       dst-ip ip-prefix-list "VLAB_9_495"
```


Linerate filtering capacity at the peering router

Router capacity is maintained, which cannot be guaranteed for implementations that parse

Performance with scale



Deterministic linerate protection

through each entry sequentially

... with minimal false positive rate

Take aways

Knowledge

The network as source of traffic big-data

AI/ML

Compile efficient filters to minimize false positives

Network Performance

Deterministic and high-performance filters capacity at the Peering routers

More information here

DDoS security | Nokia

NOSIA

DDoS security

Everything you need to know about Distributed Denial of Service (DDoS)

What is DDoS?

Distributed Denial of Service or DDoS is malicious traffic that aims to denv access or degrade or stop connectivity for individual users, internet hosts and service provider network infrastructure.

Malicious players have been exploiting IP protocol and systems vulnerabilities for more than a couple of decades now to launch DDoS attacks on their targets: network hosts and systems. Some protocols, such as BGP and Domain Name System (DNS), have gained additional security features to make them more robust. Also, industry-wide initiatives using best practices have been implemented to curb DDoS traffic (BPM-23). However, many hosts still use protocols that rely on open principles set by the internet community a long time ago. Some of them never envisaged malicious exploits that could jeopardize the intended operation of routerbased networks.

What are the different types of DDoS?

Broadly, all DDoS traffic can be categorized into:

- Amplification and reflection DDoS
- Flooding DDoS traffic (using IP address spoofing or IP header modification, IPHM)
- Application DDoS.

Please check out our application note, DDoS Protection for the cloud, 5G and IoT era.

On this page

- ↓ What is DDoS?
- ↓ What are the different types of DDoS?
- ↓ How large is DDoS (danger)?
- ↓ What is the impact on service. provider networks?
- J. Botnet DDoS
- ↓ Why is a new approach to DDoS security needed?
- ↓ Related products and solutions
- Learn more

Community

Global DDoS Threat Alliance →

NOCIA Jornadas FCCN