
B. Malaca

HPC Software Portability:
x86 to ARM

INCD/Deucalion

malaca@di.uminho.pt

Why try to port your code from x86 to ARM

Portability challenges you might face

Best practices (and things you can implement rapidly)

Conclusions

Outline

B. Malaca, Encontro RNCA 2024, 6 Nov 2024

New opportunities ARM

3B. Malaca, Encontro RNCA 2024, 6 Nov 2024

Different motivations for choosing
ARM:

 - cost
 - licensing
 - independence
 - geopolitics

HPC Engineers

Useful to embrace ARM: diversity of
HPC systems, allowing for partitions
tuned specifically for some
applications:

In Deucalion we have 3 partitions,
ARM, x86 and a (smaller) GPU-
accelerated

Users

Users need to adapt their codes to
take advantage of the available
computing power (including on
Deucalion)

First European Exascale computer
will be ARM-based

- AI
 - Finance
 - CFD
 - other HPC applications

Chip Designers

ARM is not a uniform architecture

4B. Malaca, Encontro RNCA 2024, 6 Nov 2024

A64FX (Fujitsu) Grace-Hopper (NVidia) Graviton (AWS)

ARM chips share the same architecture and Instruction Set, meaning that efforts to
optimize for a chip are portable to others

Take full advantage of Deucalion!

5B. Malaca, Encontro RNCA 2024, 6 Nov 2024

Porting your code to ARM lets you have access to the largest partition in Deucalion

ARM partition

1632 nodes

X86 partitions

500 nodes + 33 GPU nodes

32 GB High bandwidth HBM2
RAM (50% faster) 256 GB RAM

Access to optimized software Access to optimized software

A64FX chip 2 x AMD EPYC 7742 per node
(128 cores)

Portability

6B. Malaca, Encontro RNCA 2024, 6 Nov 2024

Compilation Running Get the same results

Do you get precise bitwise
reproducibility?

Do you need new toolchains for the
ARM architecture?

Can you install every dependency
(HDF5, other libraries, etc.)

Can you compile your code?

Can you run it as fast as in other
architectures (big focus on
vectorization)?

Does it scale efficiently?

Can you run your code?

But…are the results comparable
between different (or sometimes
even the same) architectures?

Compilation is an easy step

7B. Malaca, Encontro RNCA 2024, 6 Nov 2024

A lot of applications have ARM-ready versions (OpenFOAM, HDF5, ScaLAPACK,
Eigen, FFTW, GROMACS, etc.)

More than 500 modules now available in the ARM partition

Be reassured! You will be able to run your application in our ARM partition ☺

But specific applications make it harder than others

Specific issues that might arise

8B. Malaca, Encontro RNCA 2024, 6 Nov 2024

Select list of possible issues

/*main.c*/

int src = 1;

int dst;

asm ("mov %1, %0\n\t"

 "add $1, %0"

 : "=r" (dst)

 : "r" (src));

printf("%d\n", dst);

Example

• Inline assembly with no corresponding aarch64 inline assembly

Specific issues that might arise

9B. Malaca, Encontro RNCA 2024, 6 Nov 2024

/*main.c*/

/*This does not exist for ARM

chips!*/

#include <immintrin.h>

• Assembly source files with no corresponding aarch64 files

• Missing aarch64 architecture detection in autoconf config.guess scripts, etc.

• Linking against libraries that are not available on the aarch64 architecture

• Use of architecture specific intrinsics (more on that later)

• Inline assembly with no corresponding aarch64 inline assembly

Select list of possible issues Example

Specific issues that might arise

10B. Malaca, Encontro RNCA 2024, 6 Nov 2024

/*main.c*/

/*This does not support a Fujitsu

compiler!*/

#if defined(__GNUC__)

/* gcc /*

 #define VAR A

#if defined (__INTEL_LLVM_COMPILER)

 /* Intel icc */

 #define VAR B

#else

 #error Not supported!

#endif

• Assembly source files with no corresponding aarch64 files

• Missing aarch64 architecture detection in autoconf config.guess scripts, etc.

• Linking against libraries that are not available on the aarch64 architecture

• Use of architecture-specific intrinsics (more on that later)

• Preprocessor errors that trigger when compiling on aarch64

• Compiler specific code guarded by compiler specific pre-defined macros

• Inline assembly with no corresponding aarch64 inline assembly

Select list of possible issues Example

GCC or Fujitsu? It depends

11B. Malaca, Encontro RNCA 2024, 6 Nov 2024

A lot of effort has been put into open-source compilers (e.g., GNU’s gcc) so they
can match well with proprietary compilers (Fujitsu’s fcc)

OpenFOAM BLAS Libraries

For 99% of modules, there is not a significant performance increase. We maintain and support
software stacks that benefit from using Fujitsu’s toolchain

Small motorbike Conical Diffuser

GCC grasps 97% of the performance of Fujitsu’s FCC

Fujitsu Optimized BLAS
still outperforms (150%
speedup) other libraries

On a64fx, single-threaded
BLIS outperforms
OpenBLAS and is even
faster than Fujitsu’s!

numpy.dot using different BLAS Libraries

Gabriel Marcos Magalhães, OpenFOAM Iberia (2024) Miguel Dias Costa (2024)

Vectorization with diagrams

12B. Malaca, Encontro RNCA 2024, 6 Nov 2024

a b

a+b

c d

c+d

e f

e+f

Scalar Registers
(64 bits)

Vector Registers
(512 bits)

x1

x2

x3

x4

x5

x6

x7

x8

y1

y2

y3

y4

y5

y6

y7

y8

x1+y1

x2+y2

x3+y3

x4+y4

x5+y5

x6+y6

x7+y7

x8+y8

g h

g+h

Vectorization with diagrams

13B. Malaca, Encontro RNCA 2024, 6 Nov 2024

The A64FX chip has a bigger instruction
latency than the x86 equivalent but a larger
vector register (512 compared with 128 bits)

Vector instructions (SIMD: Single Instruction
Multiple Data) are individually slower to
compute but get better overall throughput

The A64FX supports both ARM Neon and SVE
instructions. Neon only supports 128-bit
vectors. SVE supports different-sized vectors
(up to 2048 bits – A64FX has 512 bits)

ARM vs Intel

Some ARM considerations

Most of the ARM chips support Neon, but only
a few support SVE (including A64FX)

Scalar Registers
(64 bits)

x1+y1

x2+y2

x3+y3

x4+y4

x5+y5

x6+y6

x7+y7

x8+y8

Vector Registers
(512 bits)

a+b

c+d

e+f

g+h

Accessing Neon (128 bits) in ARM

14B. Malaca, Encontro RNCA 2024, 6 Nov 2024

SIMDe allows to easily implement Neon vectorization from intel intrinsics

Optimized code for SSE (Intel) Optimized code for ARM

/*header file*/

/* SSE definitions */

#include <xmmintrin.h>

#include <pmmintrin.h>

/*header file*/

/*Natively substitute every Intel

instruction*/

#ifndef SIMDE_ENABLE_NATIVE_ALIASES

#define SIMDE_ENABLE_NATIVE_ALIASES

#endif

#include "simde/simde/x86/sse.h"

#include "simde/simde/x86/sse3.h"

If you already implemented SIMD code for x86 architectures, you could easily
port it to ARM Neon

Example: OSIRIS

15B. Malaca, Encontro RNCA 2024, 6 Nov 2024

B. MalacaF. Cruz

OSIRIS

Lack of native vectorization for ARM
overcome using SIMDe

OSIRIS is a well-known open-source code
for plasma physics, with a large user base

Multiple OSIRIS-based projects running
on ARM at Deucalion

Improvement of 8-20% by using SIMDe directly on the
source code!

Improvements after SVE (512 bits)

16B. Malaca, Encontro RNCA 2024, 6 Nov 2024

GROMACS supports compilation with both Neon and SVE vectorization

With more general Neon vectorization With specific SVE vectorization

Even after getting Neon to work, you can expect tens of percent speedup after
supporting SVE in our ARM partition

 Core t (s) Wall t (s) (%)

 Time: 6381.780 132.957 4799.9

 (ns/day) (hour/ns)

Performance: 64.996 0.369

 Core t (s) Wall t (s) (%)

 Time: 8184.525 170.513 4799.9

 (ns/day) (hour/ns)

Performance: 50.681 0.474

 Core t (s) Wall t (s) (%)

 Time: 4940.566 102.930 4799.9

 (ns/day) (hour/ns)

Performance: 0.841 28.535

 Core t (s) Wall t (s) (%)

 Time: 2903.855 60.499 4799.8

 (ns/day) (hour/ns)

Performance: 1.431 16.772

User example

water-cut1.0_GMX50_bare benchmark water-cut1.0_GMX50_bare benchmark

User example

Other tips for efficient A64FX use

17B. Malaca, Encontro RNCA 2024, 6 Nov 2024

Unroll and interleave leads to more instructions per clock cycle

Before After unrolling

Unrolling loops does not automatically lead to better performance

for(int i=0; i<N-1; i+=2) {

 int c0 = a[i];

 c0 = c0 + 1;

 c0 = c0 + 2;

 c0 = c0 + 3;

 c0 = c0 + 4;

 a[i] = c0;

 int c1 = a[i+1];

 c1 = c1 + 1;

 c1 = c1 + 2;

 c1 = c1 + 3;

 c1 = c1 + 4;

 a[i+1] = c1;

}

for(int i=0; i<N; i++) {

 int c = a[i]; // load

 c = c + 1; // compute

 c = c + 2; // compute

 c = c + 3; // compute

 c = c + 4; // compute

 a[i] = c; // store

}

Other tips for efficient A64FX use

18B. Malaca, Encontro RNCA 2024, 6 Nov 2024

Unroll and interleave leads to more instructions per clock cycle

Before After unrolling and interleaving

Unrolling loops and interleaving instructions tends to improve performance
quite a bit

for(int i=0; i<N-1; i+=2) {

 int c0 = a[i];

 int c1 = a[i+1];

 c0 = c0 + 1;

 c1 = c1 + 1;

 c0 = c0 + 2;

 c1 = c1 + 2;

 c0 = c0 + 3;

 c1 = c1 + 3;

 c0 = c0 + 4;

 c1 = c1 + 4;

 a[i] = c0;

 a[i+1] = c1;

}

for(int i=0; i<N; i++) {

 int c = a[i]; // load

 c = c + 1; // compute

 c = c + 2; // compute

 c = c + 3; // compute

 c = c + 4; // compute

 a[i] = c; // store

}

Other tips for efficient A64FX use

19B. Malaca, Encontro RNCA 2024, 6 Nov 2024

Unrolling and interleaving (stride 2)

Unrolling and interleaving (stride 3)

Unrolling and interleaving (stride 4)

GROMACS tests
Ewald summation RF summation

10

30

40

20

S
p

e
e

d
u

p
 %

 (
m

o
re

 is
 b

e
tt

e
r)

Speedups with little effort

In some use cases the speedup for unrolling
(stride=3) and interleaving was about 30%
(mostly from out-of-order execution)

Other optimization studies refer that in
nested loops you should have a bigger inner
loop.

*Gilles Gouaillardet, https://www.hpci-office.jp/documents/meeting_A64FX/220727/GROMACS_A64fx.pdf

It takes a village

https://www.hpci-office.jp/en/events/seminars

You can get a list of a lot of different
optimizations performed by HPC users at:

Next one on 27th November about LAMMPS

Comparison with x86

20B. Malaca, Encontro RNCA 2024, 6 Nov 2024

We routinely see 2-3x slower per-core performance on the ARM nodes, with
better performances in memory-bound, optimized codes (particularly in AI)

All comparisons are made with the same number of cores. Even though memory
access is faster with the A64FX, the clock speed of the x86 is 70% faster.

OpenFOAM (CFD) VASP (DFT) GROMACS (MD)

José Coutinho, Universidade AveiroGabriel Marcos Magalhães, UMinho

X86 is 1.4x faster than ARM (both

are not vectorized)
ARM and x86 have the same

performance
X86 is 2.4x faster than ARM

Pytorch (AI)

512 atoms,

 1024 valence electrons 512k Water Molecules

ARM 2-10x faster than x86. 1 GPU

is equivalent to 15-20 ARM nodes

Useful communities

21B. Malaca, Encontro RNCA 2024, 6 Nov 2024

Simpler way of installing scientific software with the
proper flags

Automatic creation of modules, able to install several
versions of the same software easily

EasyBuild EESSI

Streams scientific code directly to any machine

User can use a code without having any knowledge
about the specific hardware architecture

More than tools, these are excellent (and active!) communities that you should
take advantage of!

https://epicure-hpc.eu/events

Useful communities

22B. Malaca, Encontro RNCA 2024, 6 Nov 2024

Simpler way of installing scientific software with the
proper flags

Automatic creation of modules, able to install several
versions of the same software easily

EasyBuild EESSI

Streams scientific code directly to any machine

User can use a code without having any knowledge
about the specific hardware architecture

More than tools, these are excellent (and active!) communities that you should
take advantage of!

https://epicure-hpc.eu/events

Conclusions

23B. Malaca, Encontro RNCA 2024, 6 Nov 2024

Use all of Deucalion! Vectorization is the biggest challenge

Some tricks to get ARM vectorization It takes a village!

/*Natively substitute every Intel

instruction*/

#ifndef SIMDE_ENABLE_NATIVE_ALIASES

#define SIMDE_ENABLE_NATIVE_ALIASES

#endif

x1+y1 x2+y2 x3+y3 x4+y4

A R M x 8 6 x5+y5 x6+y6 x7+y7 x8+y8

Contact us!
https://www.macc.fccn.pt

https://x.com/minhoacc

https://www.linkedin.com/company/minhoacc

24

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

