5 a 6 NOVEMBRO

encontro de computação avançada 2024

UBI, Universidade da Beira Interior

UBI Experience with HPC

Rohollah Garmanjani

NOVA FCT, NOVA Math

4th Advanced Computing Meeting University of Beira Interior (UBI) November 5-6, 2024

UIDB/00297/2020 and UIDP/00297/2020

NDVAD

FCCN detroises

 3CA.UBI (Centro de Competências em Computação Avançada da Universidade da Beira Interior)

2 HPC-driven Research Projects at UBI

3CA.UBI's Team Members and Areas of Expertise

Pedro R. M. Inácio Associate Professor Coordinator of 3CA.UBI prmi@ubi.pt Areas: Security and Privacy of Data, Computerbased Simulation

Mário M. Freire Full Professor Co-coordinator of 3CA.UBI mariof@ubi.pt Areas: Organization of Systems, Computation on Cloud

Paulo Gomes

UNIVERSIDADE BEIRA INTERIOR

fct Parts a Calacta

Dir. of Informatic Service pgomes@ubi.pt **Areas:** System Administration, Networks and Cybersecurity

> C EUROCC PORTUGAL

G. (Until Oct. 6, 2024) Postdoctoral Researcher r.garmanjani@ubi.pt **Areas:** Comput. Math., Optimizatoin, ML&DS

3CA.UBI's Objectives

FCCN deteringen

- Facilitate Knowledge Sharing: Provide expertise and access to advanced computing and visualization resources.
- Enable Access to RNCA: Support UBI researchers in connecting with RNCA.
- **Support HPC-driven Research:** Leverage and expand UBI research projects requiring advanced computing, fostering HPC skills and research growth.
- Drive Scientific Innovation: Act as a catalyst in the development and support of cutting-edge scientific projects.
- **Promote Opportunities and Collaboration:** Serve as a central hub for sharing project calls, funding sources, and collaborative opportunities.

• HPC Simulations for Flame Control with Plasma Actuators

- Explainable AI for ECG-Based Cardiac Diagnosis
- Simulations of Taylor Cone Jet for Electrospray Optimization
- Modeling Ribbing and Misting in Roll Coating
- LLMs in Mental Health Support Systems
- Benchmarking CNNs for Neural Architecture Optimization
- Object Recognition Aid for the Visually Impaired

EUROCC PORTUGAL

FCCN deteringen

fct Pontecia UNIVERSIDADE

• Large Eddy Simulation of Supercritical Rocket Propulsion

REPUBLICA PORTUGUESA

- HPC Simulations for Flame Control with Plasma Actuators
- Explainable AI for ECG-Based Cardiac Diagnosis
- Simulations of Taylor Cone Jet for Electrospray Optimization
- Modeling Ribbing and Misting in Roll Coating
- LLMs in Mental Health Support Systems
- Benchmarking CNNs for Neural Architecture Optimization
- Object Recognition Aid for the Visually Impaired

EUROCC PORTUGAL

FCCN deteringen

fCt funicia UNIVERSIDADE

• Large Eddy Simulation of Supercritical Rocket Propulsion

REPUBLICA

- HPC Simulations for Flame Control with Plasma Actuators
- Explainable AI for ECG-Based Cardiac Diagnosis
- Simulations of Taylor Cone Jet for Electrospray Optimization
- Modeling Ribbing and Misting in Roll Coating
- LLMs in Mental Health Support Systems
- Benchmarking CNNs for Neural Architecture Optimization
- Object Recognition Aid for the Visually Impaired

EUROCC PORTUGAL

FCCN deteringen

fCt funicia UNIVERSIDADE

• Large Eddy Simulation of Supercritical Rocket Propulsion

- HPC Simulations for Flame Control with Plasma Actuators
- Explainable AI for ECG-Based Cardiac Diagnosis
- Simulations of Taylor Cone Jet for Electrospray Optimization
- Modeling Ribbing and Misting in Roll Coating
- LLMs in Mental Health Support Systems
- Benchmarking CNNs for Neural Architecture Optimization
- Object Recognition Aid for the Visually Impaired

EUROCC PORTUGAL

FCCN deteringen

fct Pontecia UNIVERSIDADE

• Large Eddy Simulation of Supercritical Rocket Propulsion

- HPC Simulations for Flame Control with Plasma Actuators
- Explainable AI for ECG-Based Cardiac Diagnosis
- Simulations of Taylor Cone Jet for Electrospray Optimization
- Modeling Ribbing and Misting in Roll Coating
- LLMs in Mental Health Support Systems
- Benchmarking CNNs for Neural Architecture Optimization
- Object Recognition Aid for the Visually Impaired

EUROCC PORTUGAL

FCCN deteringen

fCt funicia UNIVERSIDADE

• Large Eddy Simulation of Supercritical Rocket Propulsion

- HPC Simulations for Flame Control with Plasma Actuators
- Explainable AI for ECG-Based Cardiac Diagnosis
- Simulations of Taylor Cone Jet for Electrospray Optimization
- Modeling Ribbing and Misting in Roll Coating
- LLMs in Mental Health Support Systems
- Benchmarking CNNs for Neural Architecture Optimization
- Object Recognition Aid for the Visually Impaired

EUROCC PORTUGAL

FCCN SECTION

fct Pontecia UNIVERSIDADE

• Large Eddy Simulation of Supercritical Rocket Propulsion

- HPC Simulations for Flame Control with Plasma Actuators
- Explainable AI for ECG-Based Cardiac Diagnosis
- Simulations of Taylor Cone Jet for Electrospray Optimization
- Modeling Ribbing and Misting in Roll Coating
- LLMs in Mental Health Support Systems

FCCN services

fct Pontecia UNIVERSIDADE

- Benchmarking CNNs for Neural Architecture Optimization
- Object Recognition Aid for the Visually Impaired
- Large Eddy Simulation of Supercritical Rocket Propulsion

- HPC Simulations for Flame Control with Plasma Actuators
- Explainable AI for ECG-Based Cardiac Diagnosis
- Simulations of Taylor Cone Jet for Electrospray Optimization
- Modeling Ribbing and Misting in Roll Coating
- LLMs in Mental Health Support Systems

FCCN deputies

fct Pontecia UNIVERSIDADE

- Benchmarking CNNs for Neural Architecture Optimization
- Object Recognition Aid for the Visually Impaired
- Large Eddy Simulation of Supercritical Rocket Propulsion

HPC Training

- Short Trainings: Typically 1-hour sessions.
 - Target Audience: Mainly people with computational backgrounds.
 - Objectives:
 - Familiarize researchers with HPC usage.
 - Cover essential tasks: remote access, job submission, and job management.
- Long-term Trainings: Multi-session courses lasting from a few weeks to several weeks.
 - **Target Audience:** Participants from diverse fields with limited computational experience.
 - Objectives:
 - Build foundational skills in Machine Learning and Data Science (ML&DS).
 - Generate demand for HPC resources by introducing ML workflows.

HPC Training

- Short Trainings: Typically 1-hour sessions.
 - Target Audience: Mainly people with computational backgrounds.
 - Objectives:
 - Familiarize researchers with HPC usage.
 - Cover essential tasks: remote access, job submission, and job management.
- Long-term Trainings: Multi-session courses lasting from a few weeks to several weeks.
 - **Target Audience:** Participants from diverse fields with limited computational experience.
 - Objectives:
 - Build foundational skills in Machine Learning and Data Science (ML&DS).
 - Generate demand for HPC resources by introducing ML workflows.

Long-term Trainings: Introduction to ML&DS with Python

- Part I: Python, Data Processing, and Data Visualization (12 hrs)
 - Python basics and Linux command lines
 - Data manipulation and processing with NumPy and Pandas
 - Data visualization techniques with Matplotlib, Seaborn, and Plotly
- Part II: Machine Learning and Data Science with Scikit-Learn (6 hrs)
 - Supervised learning algorithms: Linear regression, Logistic regression, SVMs, decision trees
 - Unsupervised learning: Clustering and dimensionality reduction
- Part III: Deep Learning with PyTorch (6 hrs)

C EUROCC PORTUGAL

FCCN deteringen

fct Pontecia UNIVERSIDADE

Neural Networks and Convolutional Neural Networks

Long-term Trainings: Introduction to ML&DS with Python

- Part I: Python, Data Processing, and Data Visualization (12 hrs)
 - Python basics and Linux command lines
 - Data manipulation and processing with NumPy and Pandas
 - Data visualization techniques with Matplotlib, Seaborn, and Plotly
- Part II: Machine Learning and Data Science with Scikit-Learn (6 hrs)
 - Supervised learning algorithms: Linear regression, Logistic regression, SVMs, decision trees
 - Unsupervised learning: Clustering and dimensionality reduction
- Part III: Deep Learning with PyTorch (6 hrs)

EUROCC PORTUGAL

FCCN deputies

fct Pontecia UNIVERSIDADE

Neural Networks and Convolutional Neural Networks

Long-term Trainings: Introduction to ML&DS with Python

- Part I: Python, Data Processing, and Data Visualization (12 hrs)
 - Python basics and Linux command lines
 - Data manipulation and processing with NumPy and Pandas
 - Data visualization techniques with Matplotlib, Seaborn, and Plotly
- Part II: Machine Learning and Data Science with Scikit-Learn (6 hrs)
 - Supervised learning algorithms: Linear regression, Logistic regression, SVMs, decision trees
 - Unsupervised learning: Clustering and dimensionality reduction
- Part III: Deep Learning with PyTorch (6 hrs)

FCCN #Extense

fct states IN BEIRA INTERIOR

• Neural Networks and Convolutional Neural Networks

Student Projects from the Course

- Predicting Hotel Cancellation Using Real-World Dataset
 - Applied machine learning to analyze factors contributing to hotel booking cancellations.
- CNN Reconstruction with Optimal Sparse Sensor Placement in a Flow Field
 - Explored sensor placement techniques for accurate flow reconstruction using Convolutional Neural Networks (CNNs).
- Predicting Position for Football Players
 - Used machine learning models to predict player positions based on match data.

Student Projects from the Course

- Predicting Hotel Cancellation Using Real-World Dataset
 - Applied machine learning to analyze factors contributing to hotel booking cancellations.
- CNN Reconstruction with Optimal Sparse Sensor Placement in a Flow Field
 - Explored sensor placement techniques for accurate flow reconstruction using Convolutional Neural Networks (CNNs).
- Predicting Position for Football Players
 - Used machine learning models to predict player positions based on match data.

Student Projects from the Course

- Predicting Hotel Cancellation Using Real-World Dataset
 - Applied machine learning to analyze factors contributing to hotel booking cancellations.
- CNN Reconstruction with Optimal Sparse Sensor Placement in a Flow Field
 - Explored sensor placement techniques for accurate flow reconstruction using Convolutional Neural Networks (CNNs).
- Predicting Position for Football Players
 - Used machine learning models to predict player positions based on match data.

Impact, Learning Outcomes, and Future Plans

• Impact and Engagement:

- High attendance (30+ students: PhD, MSc, BSc) from diverse fields (e.g., Computer Science, Engineering, Bioinformatics, Sport Science).
- Increased interest in advanced ML applications.

- Boosted confidence in Python-based data analysis and ML model building.
- · Gained foundational understanding of ML techniques across disciplines.

• Future Plans:

fCt fundaçãe

FCCN services

 Launch of a new course, "Hands-on Supercomputing in ML," focusing on HPC-driven ML workflows for advanced applications.

Impact, Learning Outcomes, and Future Plans

• Impact and Engagement:

- High attendance (30+ students: PhD, MSc, BSc) from diverse fields (e.g., Computer Science, Engineering, Bioinformatics, Sport Science).
- Increased interest in advanced ML applications.
- Boosted confidence in Python-based data analysis and ML model building.
- Gained foundational understanding of ML techniques across disciplines.

• Future Plans:

• Launch of a new course, "Hands-on Supercomputing in ML," focusing on HPC-driven ML workflows for advanced applications.

Future Research: Motivation and HPC Solutions for SME Competitiveness

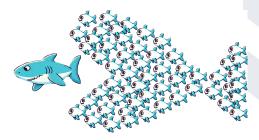
- Motivation: SMEs face challenges such as:
 - Concerns about using private cloud services due to competitive disadvantages
 - Small datasets
 - Data privacy issues
 - Limited computational resources

Future Research: Goal and Challenges

Goal:

• Develop a federated learning system leveraging government-supported HPC infrastructure to support SMEs.

• Challenges:


- **Optimization:** Developing efficient optimization algorithms tailored for federated machine learning.
- Data Quality and Privacy: Ensuring secure, high-quality data integration across sources.

Future Research: Impact for SMEs

Broader Impact:

• Helping SMEs utilize HPC and AI resources leads to better decision-making and a competitive edge against larger enterprises.

Thank You!

