
AI and Containers

Joao Pina (jpina@lip.pt)
On behalf of LIP’s Distributed Computing Group

mailto:david@lip.pt

Outline

1. Containers in Scientific Applications

2. Containers for batch processing

3. AI applications

4. Machine Learning operations (MLOps)

Why using containers for applications

Running applications across infrastructures may
require considerable effort

● Computers:
○ Several computing systems
○ Laptops, Desktops, Farms, Cloud, HPC

● OSes:
○ Several operating systems
○ Linux flavors, Distribution versions

Containerization

● Lightweight operating system level virtualization method
○ Relying on isolation instead of virtualization or emulation
○ Isolation of processes from the host operating system with very low

overhead
○ Execution across different software environments

● Enables self contained encapsulation of a given application or service
○ Including configurations
○ Including software dependencies e.g. libraries and executables

● Limitations
○ Hardware architecture must be the same
○ Operating system kernel must have the same binary interface

Why using containers for applications

● High efficiency
○ One single operating system kernel shared by many applications
○ Avoids duplication of system processes
○ Performance and resource consumption similar to direct execution in the host
○ Can take advantage of newer more optimized libraries and compilers

● Better maintainability
○ Easier application maintenance, distribution and deployment
○ Instead of adapting the user sw to the host, it brings the user environment to the

host
● Easier reproducibility and preservation

○ Having whole application or service plus its run-time environment in an image
○ Container images can be easily stored for later replay, reuse and preservation

Why using containers for applications

Container Image types

● Docker and Open Container Initiative (OCI) images
○ Widely used and supported formats, OCI is a standard

■ docker, udocker, Kubernetes, podman, Singularity, Apptainer …
● Singularity images

○ Specific format of Singularity
■ Singularity, Apptainer …

● Others
○ App Container (AppC) Image Format and Discovery
○ Cloud Native Application Bundle (CNAB)
○ etc

Udocker tool

● Open Source
● Run applications encapsulated in docker containers:

○ without using docker
○ without using (root) privileges
○ without system administrators intervention without additional system software
○ does not require Linux namespaces

● Run:
○ as a normal user
○ with the normal process controls and accounting in interactive or batch systems

● Tailored to build applications on linux cluster
○ does not require compilation: Uses Python plus some binaries.
○ Has a minimal dependencies.
○ Required executables are provided statically compiled.

Udocker tool

● deployment:
○ Just copy and untar into the user home directory.
○ Ideal to execute containers across different sites.

● Execution
○ Allows execution with several approaches/engines. Allows execution with and

without Linux namespaces.
○ udocker can be submitted with the batch job:
○ Just fetch or ship the udocker tarball with the job.

● user interface:
○ Commands and logic similar to docker.
○ udocker empowers users to use containers:
○ Ideal for heterogeneous computing environments.

ptrace
(proot)

shared lib
(fakechroot)

user
namespaces
(runc/crun)

execute
namespaces
(singularity)

udocker is an integration tool

ptrace
(proot)

shared lib
(fakechroot)

user
namespaces
(runc/crun)

pull import load

container
layers

container dir
tree

create

run $H
O

M
E/

.u
d

o
ck

er
/read layers

flattening

store

execute
Namespaces
(singularity)

simple
pathname
translation

no namespaces
no chroot
no mounts

im
ages

Udocker execution modes

Udocker tool

https://github.com/indigo-dc/udocker

GitHub:
https://github.com/i
ndigo-dc/udocker
Developed and
maintained by LIP

https://github.com/indigo-dc/udocker
https://github.com/indigo-dc/udocker

Container and Infrastructure environments

● Cloud
○ docker: simple container execution or execution via workflow managers.
○ Kubernetes: execution of containerised services with scalability and HA

● HPC
○ udocker: execution everywhere, execution across heterogeneous hosts, execution

without namespaces, privileges or other dependencies
○ Singularity or Apptainer: execution in HPC environments, singularity image format may

yield faster file access within the container
● Limitations

○ Hardware architecture must be the same
○ Operating system kernel must have the same binary interface

Container and Infrastructure environments

Outline

1. Containers in Scientific Applications

2. Containers for batch processing

3. AI applications

4. Machine Learning operations (MLOps)

Containers for Batch processing

● Encapsulation:
○ Applications, dependencies, configurations everything packed together.

Portability across heterogeneous Linux systems.
○ Makes easier the distribution and sharing of ready to use software.

● Efficiency:
○ One single kernel shared by many applications.
○ Performance and resource consumption similar to host execution. Take

advantage of newer more optimized libraries and compilers.

Containers for Batch processing

● Challenges of batch systems?
○ Integrate it with the batch system (how to start/stop etc) ? Respect batch system

policies (such as quotas/limits) ?
○ Respect batch system actions (job delete/kill) ?
○ Collect accounting ?
○ execute in a more basic way?
○ Can we download container images?
○ Can we run without a layered filesystem? Can we run them as normal user?
○ Can we still enforce container metadata?

Containers for Batch processing: limitations

● Kernel namespaces: isolate system resources from process perspective
○ Mount namespaces: isolate mount points
○ UTS namespaces: hostname and domain isolation
○ IPC namespaces: inter process communications isolation
○ PID namespaces: isolate and remap process identifiers
○ Network namespaces: isolate network resources
○ User namespaces: isolate and remap user/group identifiers

● Cgroup namespaces: isolate Cgroup directories
● Seccomp: system call filtering
● Cgroups: process grouping and resource consumption limits
● POSIX capabilities: split/enable/disable root privileges
● chroot and pivot_root: isolated directory trees
● AppArmor and SELinux: kernel access control

Outline

1. Containers in Scientific Applications

2. Containers for batch processing

3. AI Challenges

4. Machine Learning operations (MLOps)

AI models challenges

● Train ML/AI models is computationally intensive and time-consuming
○ Requires optimization of the of the training process with the right amount

of resources (computing + storage)
○ Tailored resources
○ Many interactions on the process (development)
○ Different AI techniques: Composite AI, Federate AI,LLM’s, etc.

● Requires interactive reproducible development
○ version tracking (GitHub, GitLab) and Workflow (many solution Pycompss,

Node-Red, etc)
○ Containerization of the applications

● Improve efficiency
○ Requires monitoring of resources usage and consumption

AI models challenges

● Enable Secure Access
● Organize and and track all training

○ Requires use of external tools to keep tracking of parameters,
changes in workflows (critical on teams working)

● Provide metadata and training dataset
● Deployment

○ Requires precise deployment of the correct version and workflow
○ Promote CI/CD approaches

AI MLOps

ML/DL LifeCycle: ML + Dev + OPS

Kubernetes for AI

● Kubernetes (K8s) is the industry-leading
container orchestration technology. A powerful
platform for automating deployment, scaling
and management of containerized applications.

● Also, by adopting a declarative paradigm, K8s
simplifies the management of multiple and
complex environments.

Kubernetes for AI

● Allows integration with tools such as ArgoCD
and Gitlab CI pipelines, which makes it easier for
organizations to implement the GitOps
methodology.

Why Kubernetes for AI?

● Scalability: Handles increasing workloads for AI
training and inference.

● Portability: Runs on any cloud or on-premises
infrastructure.

● Integration: Easy integration with tools like
Gitlab CI/CD pipelines.

● Serverless AI: Run AI workloads with managing
underlying infrastructure.

● GitOps: Use Git as the source of truth for
infrastructure and applications, accelerating the
delivery of applications.

Kubernetes deployment

Kubernetes deployment

Kubernetes adoption

● Start with docker image creation
● Prepare the deployment using docker compose
● Use available tools to help developers to generate kubernetes ready deployment configurations

Kompose - docker compose to kubernetes
● configuration files
● helm chart

ArgoCD: GitOPS implementation over Kompose generated configurations (CD)

Kubevela: application deployment workflow + FluxCD: Kubevela GitOPS application (CD)

Scaffold: build, push, test, deploy, verify (CI/CD)

https://kompose.io/user-guide/
https://argo-cd.readthedocs.io/en/stable/user-guide/application_sources/
https://kubevela.io/docs/
https://kubevela.io/docs/reference/addons/fluxcd/
https://skaffold.dev/docs/pipeline-stages/

INCD Public Kubernetes

● Tasks and services in
same definition level

● Multiple tools to interact
with available API

● Flexibility and easy
adoption of new
functionality abstracted
by K8s objects

● Containers are a first class
citizen (supports all
available
implementations)

Projects Implementations

● DT-Geo (https://dtgeo.eu/)
○ Digital Twin of geophysical extremes.
○ Analyse and forecast the impact of geohazards from

earthquakes, volcanoes, tsunamis and anthropogenic
seismicity.

○ Digital Twin of virtual replica of physical systems that
combine real-time data streams and high-fidelity

○ For integration in Destination Earth Initiative.
○ Started in September of 2022.

● InterTwin (https://www.intertwin.eu/)
○ Develop a common approach to the implementation of

Digital Twins (digital twin engine - DTE)
○ Co-design, develop and provide a Digital Twin Engine that

simplifies & accelerates the development of complex
application-specific DTs that benefits researchers,
business and civil society

○ Simplify DT application development with tools to
manage AI workflows and the model lifecycle while
reinforcing open science practices

○ Liaison with Destination Earth
○ Started in September 2022

● AI4EOSC (https://ai4eosc.eu/)
○ AI4EOSC will deliver an enhanced set of services for the

development of Artificial Intelligence (AI), Machine
Learning (ML) and Deep Learning (DL) models and
applications for the European Open Science Cloud (EOSC).

○ Started in September 2022

● iMagine (https://www.imagine-ai.eu/)
○ Imaging data and services for aquatic science: iMagine

provides a portfolio of image datasets, high-performance
image analysis tools empowered with Artificial
Intelligence (AI), and Best Practice documents for
scientific image analysis.

○ Life Sciencies (aquatic sciences)
○ Started in September of 2022.
○ https://www.imagine-ai.eu/

DT-GEO

31https://github.com/ai4os/ai4-compose/tree/
main

● Container execution engines

https://github.com/ai4os/ai4-compose/tree/main
https://github.com/ai4os/ai4-compose/tree/main

AI4EOSC

32https://github.com/ai4os/ai4-compose/tree/
main

● AI Model Inference Pipelines:

https://github.com/ai4os/ai4-compose/tree/main
https://github.com/ai4os/ai4-compose/tree/main

Thanks!

Discovery
through
science

Innovation
through

technology

Sharing
with People

