E FISICA EXPERIMENTAL DE PARTICULAS

particulas e tecnologia

LABORATORIO DE INSTRUMENTACAO

Al and Containers

Joao Pina ()
On behalf of LIP’s Distributed Computing Group

mailto:david@lip.pt

Outline

Containers in Scientific Applications
Containers for batch processing
Al applications

Machine Learning operations (MLOps)

Why using containers for applications

Running applications across infrastructures may
require considerable effort

e Computers:

o Several computing systems

o Laptops, Desktops, Farms, Cloud, HPC
e 0Ses:

o Several operating systems

o Linux flavors, Distribution versions

Containerization

o Lightweight operating system level virtualization method
o Relying on isolation instead of virtualization or emulation
o Isolation of processes from the host operating system with very low
overhead
o Execution across different software environments
e Enables self contained encapsulation of a given application or service
o Including configurations
o Including software dependencies e.g. libraries and executables
e Limitations
o Hardware architecture must be the same
o Operating system kernel must have the same binary interface

Why using containers for applications

e High efficiency

@)
(@)

(@)

©)

One single operating system kernel shared by many applications
Avoids duplication of system processes
Performance and resource consumption similar to direct execution in the host

Can take advantage of newer more optimized libraries and compilers

e Better maintainability

(@)

(@)

Easier application maintenance, distribution and deployment
Instead of adapting the user sw to the host, it brings the user environment to the
host

e Easier reproducibility and preservation

(@)

@)

Having whole application or service plus its run-time environment in an image
Container images can be easily stored for later replay, reuse and preservation

Why using containers for applications

Container Separate Environment
= = ==

Application Linux Kernel

Libraries
Dependencies

Hardware

L___‘

Container Image types

e Docker and Open Container Initiative (OCI) images
o Widely used and supported formats, OCl is a standard
m docker, udocker, Kubernetes, podman, Singularity, Apptainer ...
e Singularity images
o Specific format of Singularity
m Singularity, Apptainer ...
e Others
o App Container (AppC) Image Format and Discovery
o (loud Native Application Bundle (CNAB)
o etc

Udocker tool

e Open Source

e Run applications encapsulated in docker containers:
o without using docker
o without using (root) privileges
o without system administrators intervention without additional system software
o does not require Linux namespaces
e Run:
o asanormal user
o with the normal process controls and accounting in interactive or batch systems
e Tailored to build applications on linux cluster
o does not require compilation: Uses Python plus some binaries.
o Has a minimal dependencies.
o Required executables are provided statically compiled.

Udocker tool

e deployment:

o Just copy and untar into the user home directory.

o ldeal to execute containers across different sites.
e Execution

o Allows execution with several approaches/engines. Allows execution with and

without Linux namespaces.

o udocker can be submitted with the batch job:

o Just fetch or ship the udocker tarball with the job.
e user interface:

o Commands and logic similar to docker.

o udocker empowers users to use containers:

o ldeal for heterogeneous computing environments.

udocker is an integration tool

_ read layers
simple

pathname
translation
No namespaces

no chroot
no mounts
ptrace shared lib user Namespaces
namespaces . lari
(proot) (fakechroot) [Ty (singularity)

container dir

SHOME/.udocker/

execute

Udocker execution modes

Mode

Base

Description

P1

PRoot

PTRACE accelerated (with SECCOMP filtering) | | DEFAULT

P2
R1
R2
R3
F1
F2

PRoot

runC / Crun
runC / Crun
runC / Crun
Fakechroot

Fakechroot

PTRACE non-accelerated (without SECCOMP filtering)

rootless unprivileged using user namespaces
rootless unprivileged using user namespaces + P1
rootless unprivileged using user namespaces + P2

with loader as argument and LD_LIBRARY_PATH

with modified loader, loader as argument and LD_LIBRARY_PATH

F3

Fakechroot

modified loader and ELF headers of binaries + libs changed

FASTER

Fa
s1

Fakechroot

Singularity

modified loader and ELF headers dynamically changed

where locally installed using chroot or user namespaces

Udocker tool

O Product Solutions Resources Open Source Enterprise Pricing rch or jump to gnin Sign up ‘

a |nd|go—dc/ud0cker Public £ Notifications Y Fork 132 % Star 14k
<> Code o) Issues 21 11 Pullrequests (® Actions [Projects (@ Security |~ Insights

¥ master ~ ¥ 14 Branches)39 Tags Q Gotofile About

A basic user tool to execute simple
docker containers in batch or
interactive ems without root

@ mariojmdavid Merge pull request #432 from indigo-d/mariojmdavid-.. @ v

GitHub:

.github/workflows

W sqa update branch in .sqa config ¢ indigo-dc.github.io/udocker/ htt // - h H
: ps:/github.com/i
u u
Bn docker_sqaaastools fix flake and unit tests 2 years ago docker gni pc containers
.
emulation batch user chroot
- ndigo-dc/udocker
indigo docker-containers runc
| etc variables in udocker.conf 3 years ago root-privileges proot fakechroot D I d d
- . . . deep-hybrid-datacloud eoschub eve o pe a n
M paper DATALAD RUNCMD] Do interactive fixing of typos 0 months ago
" .
- st Srontasge | maintained by LIP
L
M udocker bump version 3 months ago ®
B utils bump version 3 months ago &8 Security policy
A Activity
flake8 work on pylinting flake8 2 years ago
. ' ’ g - E Custom properties
[.gitignore add to gitignore, remove link 3 years ago v 1l.dkstars
i ® 34 watching
[.mailmap add mailmap 8 years ago &
¥ 132forks
[.mdirc full sqaaas pipeline, includes new scripts 2 years ago Report repository
O travisyml prepare for test and travis 5 years ago
26
[) AUTHORS.md documentation last y
© udocker 1.3.17
[CHANGELOG.md bump version 3 months ago S
M CITING.md 2years

https://github.com/indigo-dc/udocker
https://github.com/indigo-dc/udocker

Container and Infrastructure environments

e (Cloud

o docker: simple container execution or execution via workflow managers.
o Kubernetes: execution of containerised services with scalability and HA

e HPC

© udocker: execution everywhere, execution across heterogeneous hosts, execution
without namespaces, privileges or other dependencies
o Singularity or Apptainer: execution in HPC environments, singularity image format may
yield faster file access within the container
e Limitations
o Hardware architecture must be the same
o Operating system kernel must have the same binary interface

Container and Infrastructure environments

Open User Image Types Isolation Method Infrastructure
source deploy - - . - . . . —~
and OCl docker Singular namespac system @ shared HPC CLOUD
execute images images ity es call lib call and VM
images intercept intercept batch

docker

singularityCE

singularityPRO

apptainer
podman
kubemetes

udocker

Outline

Containers in Scientific Applications

Containers for batch processing
Al applications

Machine Learning operations (MLOps)

Containers for Batch processing

e Encapsulation:
o Applications, dependencies, configurations everything packed together.
Portability across heterogeneous Linux systems.
o Makes easier the distribution and sharing of ready to use software.

e Efficiency:
o One single kernel shared by many applications.
o Performance and resource consumption similar to host execution. Take
advantage of newer more optimized libraries and compilers.

Containers for Batch processing

e (Challenges of batch systems?
o Integrate it with the batch system (how to start/stop etc) ? Respect batch system
policies (such as quotas/limits) ?
Respect batch system actions (job delete/kill) ?
Collect accounting ?
execute in a more basic way?
Can we download container images?
Can we run without a layered filesystem? Can we run them as normal user?
Can we still enforce container metadata?

o O O O O O

Containers for Batch processing: limitations

e Kernel namespaces: isolate system resources from process perspective
o Mount namespaces: isolate mount points

UTS namespaces: hostname and domain isolation

IPC namespaces: inter process communications isolation

PID namespaces: isolate and remap process identifiers

Network namespaces: isolate network resources

o User namespaces: isolate and remap user/group identifiers

Cgroup namespaces: isolate Cgroup directories

Seccomp: system call filtering

Cgroups: process grouping and resource consumption limits
POSIX capabilities: split/enable/disable root privileges
chroot and pivot_root: isolated directory trees

AppArmor and SELinux: kernel access control

o O O O

Outline

Containers in Scientific Applications

Containers for batch processing
Al Challenges

Machine Learning operations (MLOps)

Al models challenges

e Train ML/AI models is computationally intensive and time-consuming
o Requires optimization of the of the training process with the right amount
of resources (computing + storage)
o Tailored resources
o Many interactions on the process (development)
o Different Al techniques: Composite Al, Federate Al,LLM’s, etc.
e Requires interactive reproducible development
o version tracking (GitHub, GitLab) and Workflow (many solution Pycompss,
Node-Red, etc)
o Containerization of the applications
e Improve efficiency
o Requires monitoring of resources usage and consumption

Al models challenges

e Enable Secure Access
e (Organize and and track all training
o Requires use of external tools to keep tracking of parameters,
changes in workflows (critical on teams working)
e Provide metadata and training dataset

e Deployment
o Requires precise deployment of the correct version and workflow
o Promote CI/CD approaches

Al MLOps

ML/DL LifeCycle: ML + Dev + OPS

Kubernetes for Al

Kubernetes (K8s) is the industry-leading
container orchestration technology. A powerful
platform for automating deployment, scaling
and management of containerized applications.

Also, by adopting a declarative paradigm, K8s
simplifies the management of multiple and
complex environments.

Kubernetes for Al

g Developer
e Allows integration with tools such as ArgoCD i T)
and Gitlab CI pipelines, which makes it easier foi |

organizations to implement the GitOps -
methodology. 0

CEE Sync
] Cluster Status .

Kubernetes

Git

Why Kubernetes for Al?

Scalability: Handles increasing workloads for Al
training and inference.

Portability: Runs on any cloud or on-premises
infrastructure.

Integration: Easy integration with tools like
Gitlab CI/CD pipelines.

Serverless Al: Run Al workloads with managing
underlying infrastructure.

GitOps: Use Git as the source of truth for
infrastructure and applications, accelerating the
delivery of applications.

Kubernetes deployment

Commit
changes

—

\ Get confi
\ ¢}

\\values from
Git Repo \ repo
WI kubespray vars \

Operator .
Triggers

pipeline

o
Test connection
with servers Kubespray

Gitlab CI Pipeline

Kubernetes deployment

Commit
i changes
Git Repo
Operator W/ K8s and Apps

Triggers

pipeline configurations

Gitlab CI Pipeline

| Get config

=Q

from
repo

OpeneBS

VELERO

D

9

1
1
1
1
I

KubeVirt

Kubernetes adoption

e Start with docker image creation
e Prepare the deployment using docker compose
e Use available tools to help developers to generate kubernetes ready deployment configurations

@ Kompose - docker compose to kubernetes
e configuration files
e helm chart

(;) ArgoCD: GitOPS implementation over Kompose generated configurations (CD)

FluxCD: Kubevela GitOPS application (CD)

‘L\ Kubevela: application deployment workflow +

S A
A

E Scaffold: build, push, test, deploy, verify (CI/CD)

https://kompose.io/user-guide/
https://argo-cd.readthedocs.io/en/stable/user-guide/application_sources/
https://kubevela.io/docs/
https://kubevela.io/docs/reference/addons/fluxcd/
https://skaffold.dev/docs/pipeline-stages/

INCD Public Kubernetes

Tasks and services in
same definition level
Multiple tools to interact
with available API
Flexibility and easy
adoption of new
functionality abstracted
by K8s objects
Containers are a first class
citizen (supports all
available
implementations)

kpt
helm
kubectl

Control Plane (Master nodes)

eted
(key-value store)

!

3

api

API Server

Data Plane (Worker Nodes)

Worker Node 1

|
L kubelet

@@J

Container Runtime

AA

!

\ .Controller Managel|

; Scheduler

J

et
@ K8s Objects @

' kube-proxy |

Worker Node 2

kubelet

lH@J

Container Runtime

o8
@ K8s Objects @

kube-proxy

Projects Implementations

° DT-Geo (https:/dtgeo.eu/)

o Digital Twin of geophysical extremes.

o Analyse and forecast the impact of geohazards from
earthquakes, volcanoes, tsunamis and anthropogenic
seismicity.

o Digital Twin of virtual replica of physical systems that
combine real-time data streams and high-fidelity
For integration in Destination Earth Initiative.

Started in September of 2022.

° InterTwin (https:/www.intertwin.eu/)

o Develop a common approach to the implementation of
Digital Twins (digital twin engine - DTE)

o (Co-design, develop and provide a Digital Twin Engine that
simplifies & accelerates the development of complex
application-specific DTs that benefits researchers,
business and civil society

o Simplify DT application development with tools to
manage Al workflows and the model lifecycle while
reinforcing open science practices

o Liaison with Destination Earth

o Startedin September 2022

® AI4EOSC (https:/aikeosc.eu/)
o AI4EOSC will deliver an enhanced set of services for the
development of Artificial Intelligence (Al), Machine
Learning (ML) and Deep Learning (DL) models and
applications for the European Open Science Cloud (EQSC).
o Started in September 2022

® iMagine (https:/www.imagine-ai.eu/)

o Imaging data and services for aquatic science: iMagine
provides a portfolio of image datasets, high-performance
image analysis tools empowered with Artificial
Intelligence (Al), and Best Practice documents for
scientific image analysis.

o Life Sciencies (aguatic sciences)

o Startedin September of 2022.

o https:/www.imagine-ai.eu/

Container execution engines

Virtual Infrastructure

Physical Infrastructure

CLOUD (FENIX) HPC (Marconi/Leonardo)
4 N { 4
Containers Manager Workflow Manager Workflow Manager]
(Kubemetes) (COMPs) (COMPs)
o \
v) B v
f Y 's
. Apptainer
CRI-O] [contamerd docki] [udocker J udocker] [3i e gularity]
- — A -

v) N ¥ v ¥ v v
Container c N [conta Contai Non (" Container Container Non
image with image with image with image with Containerized image with image with Containerized

SS SS J SS SS L SS SS SS
A

—

=L =

b
|
1

Container Registry

(Container Images produced by eFlows4HPC)

<+— Flow of invocation
-+ - - Flow of container images

https://github.com/ai4os/ai4-compose/tree/main
https://github.com/ai4os/ai4-compose/tree/main

AI4EOSC

e Al Model Inference Pipelines:

5- Visualize
results

1- Compose
pipeline
end-user willing to exploit
existing trained models | 1. compose
and/or compose them to pipeline

enrich results

Node-RED Library

3- Obtain custom
OSCAR nodes

2- Create

R 5= Node-RED

4- Invoke service
and trigger
inference

4- Invoke sen
and trigger
inference

-

5- Visualize
results

2- Create
notebook

— Jupyter

=1

@% Elyra

3- Obtain custom
OSCAR nodes

h 4

Al4Compose GitHub
repo

https://github.com/ai4os/ai4-compose/tree/main
https://github.com/ai4os/ai4-compose/tree/main

E FISICA EXPERIMENTAL DE PARTICULAS

I LABORATORIO DE INSTRUMENTAQAO
particulas e tecnologia

Thanks!

Discovery Innovation
thl:ough through
science technology

Sharing

with People

