22 e 23OUTUBRO

encontro de computação avançada 2025

Universidade de Aveiro, Edificio da Reitoria

Portugal@EuroHPC projects&consortia: from HPC to Quantum

Leonel Sousa, INESC-ID, Instituto Superior Técnico, Universidade de Lisba



European Processor Initiative (SGA1, SGA2)

European independence in HPC processor technol.

European

Processor Initiative

- Entering HPC market with:
 - **European server-class compute chips for the first time**
 - **European software environments and tools optimized** for hybrid computing

January 2019- December 2025

SGA1 - 80 M€ SGA2 - 70 M€

Total - 150M€

BMW GROUP Rolls-Royce

- Accelerator co-design based on the Cache-Aware Roofline Model [1]
- Next-generation floating-point arithmetic unit architectures for AI/ML and HPC applications [2]
- RISC-V ecosystem advancement
 - Standard performance monitoring at user level [3]
 - New specifications for event-based sampling [4]
- EPI EPAC1.0/1.5 Test Chips Testing and Evaluation
- [1] A. Ilic et al., "Cache-aware Roofline Model: Upgrading the Loft", IEEE CAL, 2014
- [2] L. Crespo et al., "Unified Posit/IEEE-754 Vector MAC Unit for Transprecision Computing", IEEE TCAS-II, 2022
- [3] J. Domingos, et al. "Supporting RISC-V Performance Counters through Linux Performance Analysis Tools." ASAP 2023
- [4] T. Rocha et al. "RVEBS: Event-Based Sampling on RISC-V", DATE 2025 (best paper award candidate)

Digital Autonomy for RISC-V in Europe

- •Boost Europe's digital autonomy in HPC and AI through fully European, RISC-V-based hardware and software solutions.
- •Set a roadmap for post-exascale European supercomputers, laying the foundation for next-generation HPC systems.
- •Develop three advanced chiplets (vector, AI, and GPP) and an optimized software stack using a co-design approach.

Portuguese involvement and contributions:

 Task 18.7 GPP-specific SW Tools, to optimise the GPP applications and provide load-balancing. [Task Leader]

Cache-aware Roofline Model (CARM) framework and supporting tools.

 Task 27.1 Node services, to provide a complete SW stack for cuttingedge HPC and AI applications, optimised for the DARE hardware:

Online lightweight performance measurement tools – PAPI and event-based sampling (EBS).

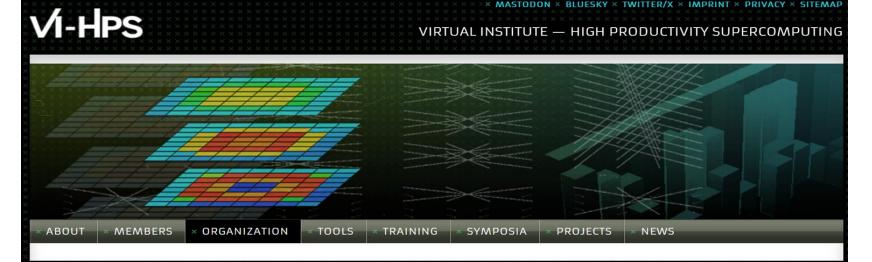
• Task 27.2 Compilers, complete SW stack for the DARE hardware:

Prototype advanced transformations using source-to-source infrastructure.

POP3

Performance Optimisation and Productivity 3

- Centre of Excellence in HPC
- Provides services to users and developers of HPC applications
 - Primary service to identify performance issues and suggest best practices
 - Second level services proof-of-concept, correctness-check, energy-efficiency study
- Provides training on the methodology
 - Webinars and dissemination also via participation in HPC conferences and workshops



INESC-ID @ https://www.vi-hps.org/

NEWS

Correctness and Debugging Workshop Series (Durham University)

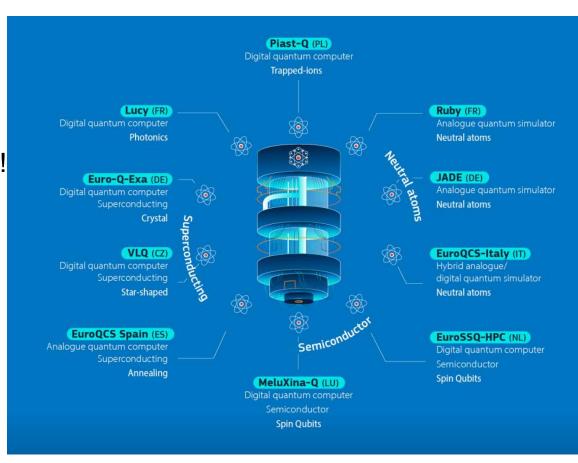
... × more >

LEADING-EDGE HPC PROGRAMMING TOOLS

The mission of the Virtual Institute - High Productivity Supercomputing (VI-HPS) is to improve the quality and accelerate the development process of complex simulation codes in science and engineering that are being designed to run on highly-parallel computer systems. For this purpose, we are developing integrated state-of-the-art programming tools for high-performance computing that assist programmers in diagnosing programming errors and optimizing the performance of their applications.

We combine the expertise of twelve partner institutions, each with a strong record of high-performance computing research.

The collaboration of the partners has been initiated with sponsorship by the Helmholtz Association of German Research Centers. Helmholtz centers and universities establish virtual institutes to concentrate research capacities and thereby create centers of excellence of international standing in key areas of research.


- Multidisciplinary team with know-how in HPC programming and tools
- Performance assessments of different types of applications (5 now)
 - Targeting different CPUs/GPUs with different programming models
 - Relying on POP methodology using tools from the project partners
- Development of tools and models for assisting with the assessments
 - Cache-Aware Roofline Modeling (CARM) Tool [1]
 - Integration with the Paraver performance analysis tool https://pop-coe.eu/blog/tool-time-carm-paraver-integration
- Publications on state-of-the-art codes targeting supercomputers [2,3]

Quantum Computing EuroHPC

 I am teaching the basics of QC to ECE and CSE MSc students [1]

- QC is still quite immature at the technological and system levels
 - Analogue vs Digital, 10-140 data qubits!
 - Reduced set of developed algorithms (QFT, Shor, Grover,...).
 - Neither tools nor frameworks for programming at a high level!
- At a first stage, they can be Domain Accelerators at HPC Centres
 - I was invited for a quantum computing COST Action project proposal.

Thank you.

For more information about FCT services developed by FCCN, visit <u>fccn.pt/en</u> or scan the QRCode.

fccn.pt/en/servicos

Obrigado.

Para mais informações sobre os serviços da FCT, desenvolvidos pela FCCN, consulte <u>fccn.pt</u> ou faça *scan* ao *QRCode*.

fccn.pt/servicos

