
Bring Quantum Computing To Life

April Luo Xinqi april.luo@spinq.cn Global Solutions Engineer

Trusted by universities in 40 countries

Bringing Quantum Computing To Life

■ R&D team with strong backgrounds in quantum computing

Dr. Jingen Xiang Founder CEO

Dr. Yike Guo Chief Consultant

Dr. Guanru Feng
Cofounder &
Senior Scientist

Dr. Shiyao Hou Scientist Consultant

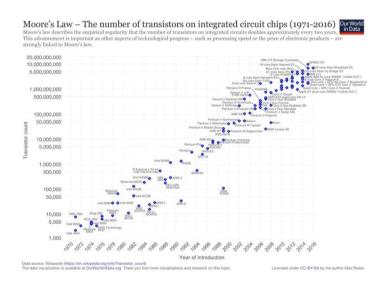
Dr. Hongyang Zou

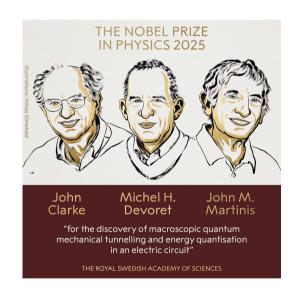
Dr. Tiejun Meng

Superconducting Director

Dr. Cong Guo
Algorithm
Director

Wei Shi
NMR
Director





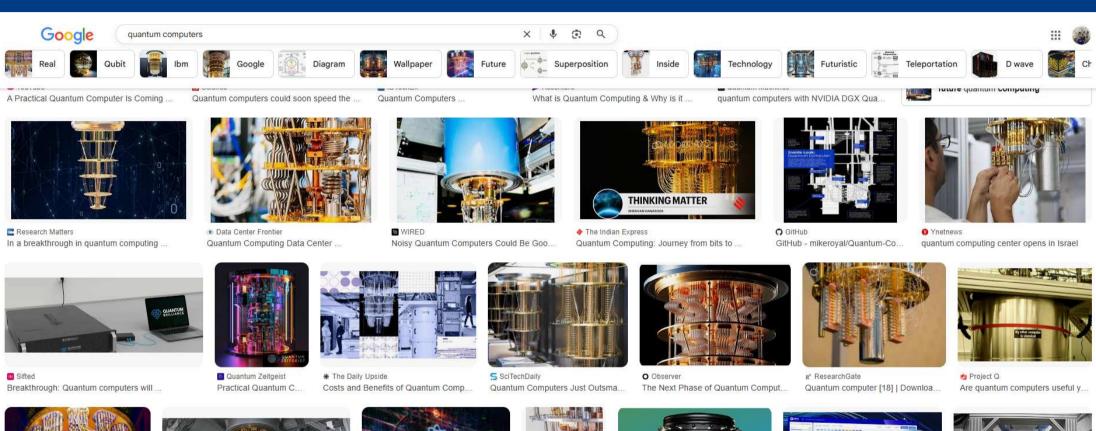
Why talking so much about quantum

Quantum computing uses quantum superposition and entanglement to process information, with great potential in enhancing computing power in drug discovery, finance, AI, and more.

Moore's Law is on the verge of its limit

Source: https://en.wikipedia.org/wiki/Moore%27s law

A foundation for support onducting qubits


Source: Nobel prize, https://x.com/NobelPrize/status/1975498493218394168

Superconducting Quantum Computer

---- Bringing Quantum Computer to Life -----

When you Google "quantum computers"

☐ Harvard Gazette quantum supremacy ...

Science Alert Google Quantum Computer Is '47 Years ...

> ArrowCore Group
The Rise of Quantum Computing: W....

Physics World
 Cool technology e...

Katie Couric Media
What Is Quantum Computing, and W...

SpinQ
Learn Quantum Computing: 4 Proven ...

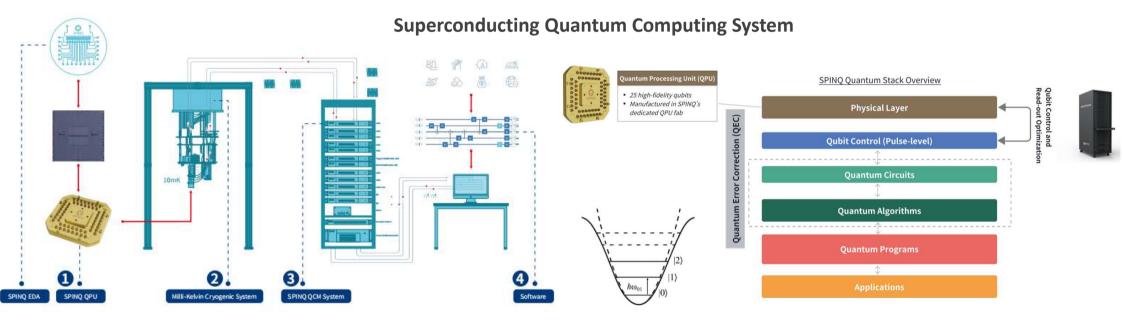
www.asahi.com
First quantum computer made in ...

Diffirent Quantum Computing Hardware

Tech	Solid-state based			Atom-based			Photon- based
	Superconducting	Semiconductor quantum dots	Topological	Neutral atoms	Ion traps	NMR	Photonic
Principle	superconducting Josephson junctions	Quantum dot electron confinement	Anyon/ Topological states	Neutral atoms trapped by optical tweezers	lons in electromagnetic traps	Nuclear spin states in molecules or solids	Photonic interference and entanglement
Current Progress	1000+ qubits, error correction	About 10 qubits	Fundamental research stage	Hundreds of qubits	Around 50 qubits	Within 13 qubits	-
Strength	Mature, reliable, strong engineering	Combines with semiconductor industry	Theoretical fault tolerance	Scalable, reconfigurable	Stable, high- fidelity	Stable, long coherence time, Mature Tech	Room temperature, long-distance friendly
Weakness	High cost	Difficult qubit uniformity, challenging fabrication	Still theoretical, no scalable system yet	Complex laser control, error correction immature	Slow gate speed, large hardware footprint	Limited scalability	Only for specific quantum tasks

■ Comparison Table: SPINQ Quantum Computers

ı	m	а	g	E
•	•••	u	ъ	•



	NOW NOW CO		
Technology	Superconducting	Nuclear Magnetic Resonance (NMR)	
Qubit Type	Artificial qubits based on superconducting circuits	Nuclear spins	
Qubit Number	2–25 qubits	2–3 qubits	
Scalability	Scalable	Not scalable	
Architecture	Quantum chip, Dillution Refrigerator, QCM system, etc	All-in-one desktop device, plug and play	
Operating Temperature	-273.14 °C to -273.13°C	0 to 40°C	
Size	An entire room	Desktop size	
Ease of Use	A professional team with physics, computer engineering, quantum information science background	Beginner-friendly	
Typical Applications	Advanced research, industrial exploration	Education, entry-level research, public outreach	

Why SpinQ focuses on Superconducting?

One of the most **promising** quantum computing tech, paving the way toward **universal quantum computing**

- Fully solid-state
- Strong scalability
- High-performance
- Compatible with semiconductor processes
- More

Projects Supported by SpinQ Superconducting QC

· 01 Flexible QPU Access for Quantum Hardware Research

The Technology Innovation Institute (TII) is a leading research center in the United Arab Emirates focused on advancing quantum computing and related technologies. As part of the UAE's broader innovation strategy, TII is actively developing superconducting quantum computing systems and requires access to calibrated QPUs for short-term experimentation and systems integration.

With the SPINQ QPU C10, TII is able to carry out focused quantum hardware development, including:

Receive characterized and tested quantum hardware.

Unlike many commercial QPU offerings, the SPINQ QPU C10 includes factory test reports detailing gate fidelity, coherence times, and other key metrics for a workable QPU. This enables early-stage validation of system performance before integration or deployment.

Conduct integration and control development.

With the SPINQ QPU C10, TII is able to advance its efforts in developing superconducting quantum control stacks, including low-level pulse sequencing and calibration routines. Access to a pre-characterized, stable QPU enabled repeatable experimentation and rapid development cycles.

Utilize dedicated technical support.

Post-deployment engineering support facilitated the QPU's integration with TII's existing infrastructure, allowing the research team to resolve system-level challenges efficiently and maintain experimental uptime.

O3 Experimental Quantum Dynamics and Hamiltonian Inference

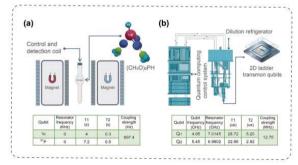
The SPINQ QPU C20 was used as part of an experimental framework for investigating quantum many-body dynamics and system characterization. Researchers integrated machine learning methods with real-time quantum data collected from a 20-qubit superconducting chip, enabling bidirectional analysis of observable evolution and Hamiltonian structure.

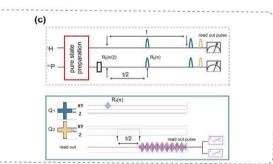
This application demonstrates the SPINQ QPU C20's role in:

Predictive modeling of quantum system dynamics.

A recurrent neural network (RNN) model, based on Long Short-Term Memory (LSTM) architecture, was trained to forecast the evolution of local observables in driven quantum systems. Experiments were performed using the SPINQ QPU C20 configured in a 2D ladder architecture with 20 transmon qubits.

| Hamiltonian parameter inference.

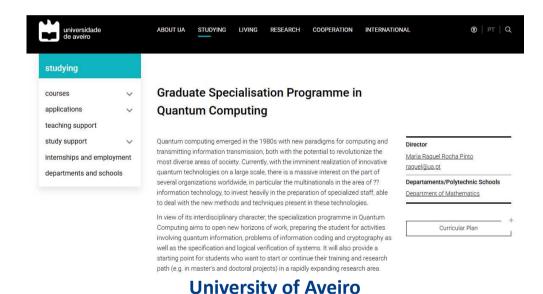

The same model was applied in reverse to infer time-dependent Hamiltonian parameters from observed system behavior. This dual capability enabled researchers to extract underlying field strengths and coupling parameters from experimental data, supporting tasks in quantum control and feedback optimization.


Validation across distinct driving regimes.

Experiments included quench dynamics and periodic driving, with system evolution predicted beyond training intervals (e.g., 20-50 ms), and validated through local measurements (e.g., < 0.00). The model demonstrated high fidelity in reproducing observed results.

Application to quantum error mitigation and control.

characterization of system behavior and inference of Hamiltonian structure support broader objectives in noise modeling, system calibration, and feedback-based control — critical components of scalable quantum computing



 $Experimental platforms \ and \ control \ protocols \ used for \ quantum \ dynamics \ prediction \ and \ Hamiltonian \ inference \ on \ NMR \ and \ superconducting \ qubit \ system$

Why Quantum Education Matters?

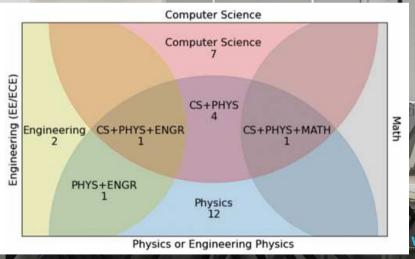
Quantum computing won't become practical without more professionals in the field.

https://www.ua.pt/en/curso/459

University of Coimbra

https://www.uc.pt/en/cncg/dig.intel-_reforco-das-competencias-digitais/specialised-training-course-in-quantum-computing-and-technologies-2/

However, quantum education is not easy.



Quantum Education Challenges

1. Interdisciplinary Barriers

Quantum computing courses bring together <u>physics</u>, <u>computer</u> <u>science</u>, <u>mathematics</u>, <u>engineering</u>, making it challenging for students to fully grasp the subject.

Proven curricula by our experienced instructors

2. Lack of Structure and Instructors

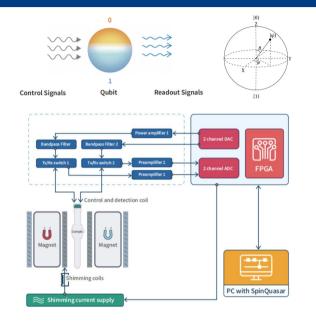
Quantum computing is still in its <u>early stage</u> as an academic field.

Structured programs and qualified instructors are still lacking, even in the US, Europe, or China.

nstructo<mark>r trainin</mark>g, course design, project assistance serv

4. Limited Teaching Resource

Real quantum computers are often expensive, too large for


charles Cloud opme with long queues and limited access.

Simulators lack physical reality, limiting successful experience.

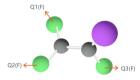
vith supporting software for hands-on learning

Why NMR Quantum Computer For Education?

SPINQ Gemini Lab

A real quantum computer?

Or


Just a toy?

An NMR quantum computer with 2-3 qubits!

How NMR Quantum Computing Works:

Uses the nuclear spins of atoms as qubits

2-Qubit Sample: (CH₃O)₂POH

3-Qubit Sample: C₂F₃I

- Radio-frequency pulses are applied to control spin states and perform quantum logic gates
- The NMR signal is measured to read out the result of the computation

Why NMR Quantum Computer For Education?

1. An ideal experimental platform

- NMR was one of the earliest systems to realize quantum computing
- It is highly precise, very stable, and supported by decades of mature research

2. Universality

- Supports a full set of universal quantum gates
- Compatible with other mainstream quantum technologies, including superconducting qubits

3. Classroom-ready design

Easy to operate, affordability, and small-size

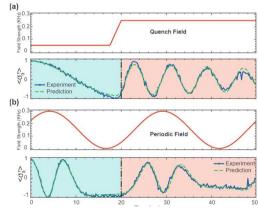
4. Comprehensive teaching materials

From quantum computing principles, well-known algorithms, to even quantum information science

■ Lab Course - Principles & Algorithms & Technologies - Gemini Lab

	The Principles of Quantum Computing				Objectives	
Quantum Computing	NMR Phenomena & Signals	Rabi Oscillation	Qubit	Quantum Decoherence	Explore the quantum properties of nuclei, qubits, ar understand their role in quantum computing experim	
	Quantum Control Quantum System Initialization			stem Initialization	learn quantum system control methods	
Experiments						
	Quantum Algorithms				Objectives	
	Deutsch Algorithm	Grover Algorithm	HHL Algorithm	Quantum Fourier Transform (QFT)	Understand quantum algorithms' principles and pract	
	Quantum Control Techniques				Objectives	
Quantum	Spin Echo	Dynamical Decoupling	Pulse Shaping	Numerical Pulse Optimization	Master essential control techniques for research purposes	
Information	Quantum Simulation				Objectives	
Technology	Analog Quantum Simulation Digital Quan			ntum Simulation	Study quantum systems using simulation techniques to understand their behavior and application	
	■ Bringing Quantum Computer to Life ■					

Trusted by universities in 40 countries


Quantum Computing Education

Dual-Capability Machine Learning Models for Quantum Hamiltonian Parameter Estimation and Dynamics Prediction

Zheng ${\rm An},^1$ Jiahui ${\rm Wu},^1$ Zidong ${\rm Lin},^2$ Xiaobo Yang,^2 Keren ${\rm Li},^{3,4,*}$ and Bei Zeng 1,†

¹Department of Physics, The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong, China
²Shenhen SpinQ Technology Co, Ltd., 51843, Shenzhen, China
³College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
⁴Quantum Seience Center of Guangdong-Hong Kong-Macao Grater Bay Arva (Guangdong), Shenzhen 518045. China
(Datci: May 21, 2024)

Recent advancements in quantum hardware and classical computing simulations have significantly enhanced the accessibility of quantum system data, leading to an increased demand for precise descriptions and predictions of these systems. Accurate prediction of quantum Hamiltonian dynamics and identification of Hamiltonian parameters are crucial for advancements in quantum simulations, or correct orcretion, and control protocols. This study introduces a machine learning model with dual capabilities: it can deduce time-dependent Hamiltonian parameters from observed changes in local observables within quantum many-body systems, and it can pried; the evolution of these observables based on Hamiltonian parameters. Our models validity was confirmed through theoretical simulations across various scenarios and further validated by two experiments. Initially, the model was applied to a Nuclear Magnetic Resonance quantum computer, where it accurately predicted the dynamics of local observables. The model was then tested on a superconducting quantum computing visit in the proposal control of the observables of the proposal control of the proposal contro

Research Papers Using SpinQ Quantum Computers

Thanks!

April Luo Xinqi
april.luo@spinq.cn
Global Solutions Engineer

WhatsApp

LinkedIn